期刊文献+

金属纳米薄膜微尺度热输运过程实验研究 被引量:4

AN EXPERIMENTAL INVESTIGATION OF ENERGY TRANSPORT OF METAL FILM
下载PDF
导出
摘要 本文应用飞秒激光泵浦-探测技术对金属纳米薄膜微尺度能量输运过程进行了研究.在此系统中,我们采用低能量密度泵浦光进行加热,测量了纳米金膜在一个脉宽为140 fs的激光脉冲作用后,其非平衡电子温度在几个皮秒内随时间的变化.分别用一步抛物模型、两步抛物模型以及双相滞模型和实验结果进行了对比.结果表明,实验结果和两步抛物模型数值模拟结果吻合良好. Pump-and-probe technique is used to study the energy transport of nano-size gold film with lower pump intensity. In this experiment the laser pulse duration is 140 fs and the max electron temperature change is less than 10 K. In this paper, we give the comparison of experimental results with predicted results from the POS model, the PTS model and the DPL model. The comparison shows that the POS model and the DPL model fail to predict these experimental results and the PTS model agrees well with the measure data.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2008年第2期297-300,共4页 Journal of Engineering Thermophysics
基金 中国科学院“百人计划”项目
关键词 泵浦-探测系统 金属纳米薄膜 微尺度热输运 pump-and-probe technique nano-size metal film nano-size energy transport
  • 相关文献

参考文献4

  • 1Qiu T Q, Juhasz T, Suarez C, Bron W E, et al. Femtosecond Electronic Heat-Transport Dynamics in Thin Gold Films. International Journal of Heat and Mass Transfer, 1994, 37(17): 2799-2808.
  • 2Eesley G L. Observation of Nonequilibrium Electron Heating in Copper. Physical Review Letters, 1983, 51(23): 2140-2143.
  • 3Tzou D Y. Macro-to Microscale Heat Transfer: The Lagging Behavior. Washington, DC: Taylor & Francis, 1996, 111-138.
  • 4Brorson S D, Fujimoto J G, Ippen E P. Femtosecond Electronic Heat-Transport Dynamics in Thin Gold Films. Physical Review Letters. 59(17): 1962-1965.

同被引文献50

  • 1祝捷,唐大伟,程光华,韩鹏,赵卫,张兴.飞秒激光泵浦-探测热反射系统的建立与调试[J].工程热物理学报,2008,29(7):1227-1230. 被引量:3
  • 2王秀春,智会强,毛一之,杨增军,韩鹏.用遗传算法求解多维导热反问题[J].核动力工程,2005,26(1):23-27. 被引量:8
  • 3邓素辉,陶向阳,刘明萍,周彩玉.飞秒-纳秒脉冲激光烧蚀金属热效应分析[J].激光技术,2007,31(1):4-7. 被引量:14
  • 4LI Bincheng, Pottier L, Roger J P, et al. Complete Thermal Characterization of Film-on-Substrate System by Modulated Thermoreflectance Microscopy and Multi- parameter Fitting [J]. J Appl Phys, 1999, 86(5): 5314- 5316.
  • 5Cahill D G, Pohl R O. Thermal Conductivity of Amor- phous Solids Above the Plateau [J]. Phys Rev B, 1987, 35(8): 4067-4073.
  • 6Cahill D G. Thermal Conductivity Measurement From 30 to 750 K: the 3 Omega Method [J]. Rev Sci Instrum, 1990, 61(2): 802- 808.
  • 7Borca-Tasciuc T, CHEN Gang, Kumar A R. Data Reduc- tion in 3 Omega Method for Thin-Film Thermal Conduc- tivity Determination [J]. Rev Sci Instrum, 2001, 72(4): 2139 -2147.
  • 8Stoner R J, Maris H 3. Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K[J]. Phys Rev B, 1993, 48(22): 16373 -16387.
  • 9Cahill D G, Goodson K, Majumdar A. Thermometry and Thermal Transport in Micro/Nanoscale Solid-State De- vices and Structures [J]. J Heat Transf, 2002, 124(2): 223- 241.
  • 10ZHU Jie, TANG Dawei, WANG Wei, et al. Ultra- fast Thermoreflectanee Techniques for Measuring Ther- mal Conductivity and Interface Thermal Conductance of Thin Films [J]. J Appl Phys, 2010, 108(9): 094315.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部