期刊文献+

基于非线性主成分和聚类分析的综合评价方法 被引量:16

A New Method of Synthetic Evaluation Based on Non-linear Principal Component and Cluster Analysis
下载PDF
导出
摘要 针对传统主成分在处理非线性问题上的不足,阐述了传统方法在数据无量纲化中"中心标准化"的缺点和处理"线性"数据时的缺陷,给出了数据无量纲化和处理"非线性"数据时的改进方法,并建立了一种基于"对数中心化"的非线性主成分分析和聚类分析的新的综合评价方法。实验表明,该方法能有效地处理非线性数据。 Against the weaknesses of traditional principal component analysis when it is used to solve nonlinear problems, this paper points out its shortage of “centralized criterion in data un - dimensionalization” and its drawbacks on processing “non - linear” data firstly, puts forward improvement secondly, and then builds up a new synthetic evaluation based on non - linear principal component analysis according to “centralized logarithm” and cluster analysis in the end. The research result shows that the new method can effectually deal with non- linear data.
作者 童新安 许超
出处 《统计与信息论坛》 CSSCI 2008年第2期37-41,46,共6页 Journal of Statistics and Information
关键词 主成分分析 中心标准化 均值化 对数中心化 聚类分析 principal component analysis centralized criterion equalization centralized logarithm cluster analysis
  • 相关文献

参考文献3

二级参考文献19

  • 1叶宗裕.主成分综合评价方法存在的问题及改进[J].统计与信息论坛,2004,19(2):29-31. 被引量:39
  • 2刘凤朝,潘雄峰,王元地,朱纳米.15个副省级城市专利发展状况评价与分析[J].情报科学,2004,22(8):955-959. 被引量:27
  • 3林小苹,黄长江,林福荣,陈旭明.海水富营养化评价的主成分-聚类分析方法[J].数学的实践与认识,2004,34(12):69-74. 被引量:15
  • 4刑文训.现代优化计算方法[M].北京:清华大学出版社,1999..
  • 5[4]KOHONEN T. Self-organized formation of topologically correct feature maps[J] . Biological Cybernetics,1982,43(1) :59-69.
  • 6[5]KOHONEN T. The self-organizing map[J]. Proceedings of IEEE,1990,78(9):1 464-1 480.
  • 7[6]KOHONEN T. Engineering applications of SOM[J].Proceedings of IEEE,1996,84(10):1 358-1 383.
  • 8Carreira-Perpian M A. A Review of Dimension Reduction Techniques:[Technical Report CS-96-09]. Department of Computer Science, University of Sheffield, 1997
  • 9Maeda E,Murase H. Multi-category classification by kernel based nonlinear subspace method. In:Proc. of the IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP 99), IEEE Press, 1999
  • 10Scholkopf B, Smola A J, Muller Klaus-Robert. Kernel Principal Component Analysis [M]. Advances in Kerrel Methods, MIT Press, 1998. 327~352

共引文献150

同被引文献139

引证文献16

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部