期刊文献+

无限的数学与哲学(续二) 被引量:3

下载PDF
导出
摘要 讲述几个无限性对象的数学与哲学问题.重点分析论述自然数的无限性与直线连续统点集结构等问题.简要评述近、现代数学诸流派的一些观点分歧及其认识论根源,同时简要介绍本文作者与合作者的某些有关研究.
作者 徐利治
出处 《高等数学研究》 2008年第1期M0002-M0002,3-7,共6页 Studies in College Mathematics
  • 相关文献

参考文献20

  • 1D. Bailey, P. Borwein, S.Plouffe, On lhe rapid computation of various polylogarithmic constants[J].Math. Computation, 66(1997) :903--913.
  • 2G. Cantor, Contributions to the Founding of the Theory of Transfinite Numbers[M]. New York:Dover Publications, 1995.
  • 3王前 俞晓群等译.数学经验[M].南京:江苏教育出版社,1991.1-29.
  • 4贺麟,王太庆译.哲学史讲演录[M].北京:商务印书馆,1996.
  • 5D. Hilbert, On the Infinite[J], Mathematische Annalen, Berlin, 1925(95):161- 190.
  • 6徐利治,孙广润.On Poincaré's Remark and a Kind of Nonstandard Measure Defined on ~*(R^n)[J].Journal of Mathematical Research and Exposition,2001,21(2):159-164. 被引量:3
  • 7徐利治,徐铁生.A Formulation of Poincare's Intuitive Concept of Linear Continuum *[J].Journal of Mathematical Research and Exposition,2003,23(4):635-643. 被引量:1
  • 8S. Maclane, Mathematics, Form and Function[M]. Springer-Verlag, 1936:Chap. 1.
  • 9J. D. Monk, On the Foundation of Set Theory[J].Amer. Math. Monthly, 1970(77) : 703 -- 711.
  • 10A. Robinson, Nonstandard Analysis[M]. Amsterdam, 1974.

二级参考文献13

  • 1BELL J L. A Primer of Infinitesimal Analysis [M]. Cambridge University Press, Cambridge (U.K.), 1998.
  • 2HEGEL G W F. Vorlesungen Uber die Geschichte der Philosophie [M]. Fr. Prommanns Verlag, Stuttgart , 1928.
  • 3HSU-L C,SUN G R. On Poincaré's remark and a kind nonstandard measure defined on *(R^n) [J]. J Math Res Exposition, 2001, 21(2): 159-164.
  • 4KAMO S. Nonstandard real number systems with regular gaps [J]. Tsukuba J Math, 1981, 5(1): 21-24.
  • 5KAMO S. Nonstandard natural number systems and nonstandard models [J]. J Symbolic Logic, 1981, 46(2): 365-376.
  • 6LOEB P A. Conversion from nonstandard to standard measure spaces and applications in probability theory [J]. Trans Amer Math Soc, 1975, 211: 113-122.
  • 7ROBINSON A. Nonstandard Analysis [M]. Amsterdam, 1974.
  • 8RUSSELL B.The Principles of Mathematics [M]. 2nd Edition, London, 1937, 347.
  • 9SUN G R. A Treatise on Nonstandard Analysis [M]. Beijing: Science Press, 1995.
  • 10WEYL H. Das Kontinuum [M]. Leipzing, Gruyter, 1918.

共引文献24

同被引文献12

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部