期刊文献+

基于推拉策略的文本分类增量学习研究 被引量:1

Research on Incremental Learning of DragPush-Based Text Classification
下载PDF
导出
摘要 学习算法是否具有增量学习能力是衡量其是否适合于解决现实问题的一个重要方面。增量学习使学习算法的时间和空间资源消耗保持在可以管理和控制的水平,已被广泛应用于解决大规模数据集问题。针对文本分类问题,本文提出了增量学习算法的一般性问题。基于推拉策略的基本思想,本文提出了文本分类的增量学习算法ICCDP,并使用该算法对提出的一般性问题进行了分析。实验表明,该算法训练速度快,分类精度高,具有较高的实用价值。 The ability to incrementally learn from batches of data is an important feature that makes a learning algorithm more applicable to real world problems. Incremental learning may be used to keep memory and time consump tion of the learning algorithm at a manageable level. Incremental learning algorithms have been widely used for sol- ving large-scale dataset problems. For text classification problem, the paper presents the general issues of an incremental learning algorithm. Based on DragPush strategy, the paper introduces a text classification incremental learn ing method, named ICCDP. Finally, it explores the issues of incremental learning based on ICCDP. The results of the experiment reveals that ICCDP is of high value for its fast training and its excellent classification performance.
出处 《中文信息学报》 CSCD 北大核心 2008年第1期37-43,共7页 Journal of Chinese Information Processing
基金 国家973资助项目(2004CB318109,2007CB311100)
关键词 计算机应用 中文信息处理 增量学习 推拉策略 文本分类 中心法 computer application Chinese information processing incremental learning DragPush text classification centroid method
  • 相关文献

参考文献13

  • 1N Syed,H Liu,and K Sung.Incremental learning with support vector machines[A].In:Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-99)[C].Stockholm,Sweden,1999.
  • 2S Ruping.Incremental learning with support vector machines[A].In:The First IEEE International Conference on Data Mining(ICDM)[C].2001:641-642.
  • 3萧嵘,王继成,孙正兴,张福炎.一种SVM增量学习算法α-ISVM[J].软件学报,2001,12(12):1818-1824. 被引量:85
  • 4G Cauwenberghs,T Poggio.Incremental and Decremental Support Vector Machine Learning[J].Machine Learning,2001,44(13):409-415.
  • 5R Polikar,L Udpa,S Udpa,et al.Learn++:an incremental learning algorithm for supervised neural networks[J].IEEE Trans System,Man,and Cybernetic,2001,31(4):497-508.
  • 6文益民 杨旸 吕宝粮.集成学习算法在增量学习中的应用研究.计算机研究与发展,2005,42:222-227.
  • 7J Platt.A resource allocating network for function interpolation[J].Neural Computation,1991,3 (2):213-225.
  • 8Lu Yingwei,Sundarajan,Saratchandran.Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm[J].IEEE Trans.on Neural Networks,1998,9 (2):308-318.
  • 9S Tan,X Cheng,M Ghanem,et al.A Novel Refinement Approach for Text Categorization[A].ACM CIKM[C].2005,New York:ACM Press,2005.469-476.
  • 10S Tan and X Cheng.An Effective Approach to Enhance Centroid Classifier for Text Categorization[A].PKDD2007[C].Accepted.

二级参考文献1

  • 1Christopher J.C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition[J] 1998,Data Mining and Knowledge Discovery(2):121~167

共引文献86

同被引文献18

  • 1滕月阳,唐焕文,张海霞.一种新的支持向量机增量学习算法[J].计算机工程与应用,2004,40(36):77-80. 被引量:7
  • 2桑农,张荣,张天序.一类改进的最小距离分类器的增量学习算法[J].模式识别与人工智能,2007,20(3):358-364. 被引量:9
  • 3王修君,沈鸿.一种基于增量学习型矢量量化的有效文本分类算法[J].计算机学报,2007,30(8):1277-1285. 被引量:14
  • 4Xiang Tao, Gong Shaogang. Incremental and Adaptive Abnormal Behavior Detection. Computer Vision and Image Understanding, 2008, 111(1): 59-73.
  • 5Guo Gongde, Wang Hui, Bell D, et al. KNN Model Based Approach in Classification // Proc of the OTM Confederated International Conferences on CoopIS, DOA and ODBASE. Catania, Italy,2003 : 986 - 996.
  • 6Guo Gongde, Wang Hui, Bell D, et al. Using KNN Model for Automatic Text Categorization. Soft Computing: A Fusion of Foundations, 2006, 10(5) : 423 -430.
  • 7Ye Nong, Li Xiangyang: A Machine Learning Algorithm Based on Supervised Clustering and Classification// Proc of the 6th International Computer Science Conference on Active Media Technology. Hongkong, China, 2001:327-334.
  • 8Bian H Y. Fuzzy-Rough Nearest Neighbor Classification: An Integrated Framework// Proc of the IASTED International Symposium on Artificial Intelligence and Applications. Malaga, Spain, 2002 : 160 - 164.
  • 9Rosa J L A, Ebecken N F F. Data Mining for Data Classification Based on the KNN-Fuzzy Method Supported by Genetic Algorithm// Proc of the 5th International Conference on High Performance Computing for Computational Science. Porte, Portugal, 2003 : 126 - 133.
  • 10Keller J M, Gray M R, Jr Givens J A. A Fuzzy K-Nearest Neighbor Algorithm. IEEE Trans on Systems, Man and Cybernetics, 1985, 15(4) : 580 -585.

引证文献1

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部