期刊文献+

一种新的层次化结构问题分类器 被引量:5

A Novel Hierarchical Structure Question Classifier
下载PDF
导出
摘要 问题分类是自动问答系统中关键技术之一,而问题中的关键词语是问题分类的重要依据。本文主要探讨问题词和中心词在问题分类中所起的作用,提出一种基于问题词和中心词的层次化结构问题分类器。分类器首先利用问题词将句子集分为三类,然后对于每个类别分别建立相应的分类器,对于what型问题,本文构造了基于关联规则的中心词分类器。本文实现的层次化结构分类器在TREC 2007 QA问题集和UIUC数据集上精度分别达到了90.6%和84.0%,充分显示了问题词和中心词在问题分类中至关重要的作用。 Question classification is one of the most crucial models in question answering system. And the key words play very important roles for question classification task. In this paper, we investigate the role of question word and head word in question classification. This paper proposed a novel hierarchical structure question classifier based on the question words and head words. Using question words, it first simple classified the question sentence into three categories. For each category, we designed an appropriate classifier respectively. As to the type of what questions, we constructed a head word based classifier using assassination rules. The novel hierarchical structure question clas- sifier is tested on the TREC2007 QA question set and the UIUC Dataset. It can get accuracy of 90.60/00, 84.0% respectively, which proved the importance of the question words and head words in the question classification.
出处 《中文信息学报》 CSCD 北大核心 2008年第1期93-98,共6页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60572084) 863国家高技术研究发展计划资助项目(2006AA02Z321)
关键词 计算机应用 中文信息处理 问题分类 自动问答系统 问题词 中心词 computer application Chinese information processing question classification question answering system question word head word
  • 相关文献

参考文献11

  • 1Ellen M.Voorhees,Hoa Trang Dang.Overview of the TREC 2005 Question Answering Track[A].In:Proceedings of the 14th Text Retrieval Conference (TREC-14)[C].2005.
  • 2Terence Clifton,William Teahan.Bangor at TREC 2004:Question Answering Track[A].In:Proceedings of the 13th Text Retrieval Conference (TREC-13)[C].2004.
  • 3Li,X.and D.Roth.Learning question classifiers[A].In:Proceedings of the 19th International Conference on Compuatational Linguistics (COLING)[C].2002.556-562.
  • 4Lee,K.-S.,J.-H.Oh,J.Huang,J.-H.Kim,and K.-S.Choi.TREC-9 Experiments at KAIST:QA,CLIR and Batch Filtering[A].In:Proceedings of the 9th Text Retrieval Conference (TREC-9)[C].2003.303-316.
  • 5Prager,J.,D.Radev,E.Brown,A.Coden,and V.Samn.The use of predictive annotation for question answering in TREC[A].In:Proceedings of the 8th Text Retrieval Conference (TREC-8)[C].1999.
  • 6Pasca,M.and S.M.Harabagiu.High Performance Question/Answering[J].In:Research and Development in Information Retrieval,2001,366-374.
  • 7Hacioglu,K.and W.Ward.Question classification with support vector machines and error correcting codes[A].In:Proceedings of HLT-NAACL[C].Edmonton,Canada:2003.28-30.
  • 8Donald Metzler and W.Bruce Croft.Analysis of Statistical Question Classfication for Fact-based Questions[J].In:Journal of Information Retrieval,2005 8(3):481-504.
  • 9Zhang,D.and W.Lee.Question classification using support vector machines[A].In:Proceedings of the 26th Annual International ACM SIGIR conference[C].2003.26-32.
  • 10Minh Le Nguyen,Thanh Tri Nguyen and Akira Shimazu.Subtree Mining for Question Classification Problem[A].In:Proceedings of the 20th International Conference on Artificial Intelligence[C].2007.1695-1700.

同被引文献107

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部