期刊文献+

不同种类支持向量机算法的比较研究 被引量:8

Comparative Research on Various Support Vector Machine Algorithms
下载PDF
导出
摘要 介绍一种新型的机器学习方法—支持向量机.论述了不同种类支持向量机算法并指出了每种算法的优劣.实验结果显示了核函数中选择合适的参数对分类器的效果是很重要的,通过实验还重点比较了Chunking、SMO和SVM light三种典型分解算法,并分析了训练速度优劣的原因.文章最后给出了今后SVM研究方向的一些预见. This paper introduces a new machine learning algorithm--Support Vector Machine. This paper presents various types of support vector machine algorithms and points out their advantages and disadvantages. The experimental results show that it is important for the effect of classifier to select proper parameters of kernel function. With the comparison of the performance of the three classic SVM algorithms which are Chunking, SMO and SVMlight. The paper analyses the reasons causing the difference of training speed. In the end, the paper points out the research direction of SVM algorithms in the future.
作者 谢承旺
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第1期106-109,共4页 Journal of Chinese Computer Systems
基金 福建省科技厅项目(2006F5024)资助
关键词 支持向量机 核函数 分解算法 support vector machine kernel function decomposition algorithm
  • 相关文献

参考文献2

二级参考文献17

  • 1V.N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 2V. Cherkassky, F. Mulier. Learning from Data: Concept,Theory and Method. NY: John Viley & Sons, 1997.
  • 3O. Chapelle, V. M. Vapnik. Model selection for support vector machines. In: Proc. the 12th Conf. Neural Information Processing Systems. Cambridge, MA: MIT Press, 1999.
  • 4O. Chapelle, V. N. Vapnik, O. Bousquet, et al. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46(1): 131~159.
  • 5N. Cristianini, J. Shawe-Taylor, J. Kandola, et al. On kernel target alignment. In: Proc. Neural Information Processing Systems. Cambridge, MA: MIT Press, 2002. 367~373.
  • 6K. Tsuda, G. Ratsch, S. Mika, et al. Learning to predict the leave-one-out error of kernel based classifiers. In: Proc. 2001Int'l Conf. Artificial Neural Networks-ICANN 2001. Berlin:Springer-Verlag, 2001.
  • 7Hearst M.A., Dumais S.T., Osman E., Platt J., Scholkopf B.. Support vector machines. IEEE Intelligent Systems, 1998, 13(4): 18~28
  • 8Vapnik V.N.. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10(5): 988~999
  • 9Vapnik V.N.. Statistical Learning Theory.2nd ed..New York: Springer-Verlag, 1999
  • 10Müller Klaus-Robert, Mika Sebastian, Rtsch Gunnar, Tsuda Koji, Schlkopf Bernhard. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12(2): 181~201

共引文献100

同被引文献83

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部