期刊文献+

最长模式子序列问题的算法分析 被引量:1

An Algorithm for the Longest Pattern Subsequence Problem
下载PDF
导出
摘要 最长模式子序列问题在生物信息学中有重要的应用.本文首次提出求a=a0a1…an-1∈ωn的最长σ模式子序列的O(n2)时间算法,并对σ≤2的情形推广了RSK算法和标准Young表,对算法作了改进,得到了当σ=1时的O(nlogk)时间算法和当σ=2时的O(n)时间算法. This paper studies the longest pattern subsequence problem based on the dynamic programming algorithm. An O(n^2) time algorithm for the problem is firstly presented. Then the presented algorithm is improved further by generalizing the RSK algorithm and the standard Young tableau. When |σ| = 1, the time required by the algorithm is improved to O(nlogk). When |σ| =2, the time required by the algorithm is improved to O(n), an optimal algorithm.
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第1期135-138,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60172017)资助 福建省自然科学基金项目(A0510008)资助
关键词 σ模式子序列 动态规划算法 RSK算法 标准Young表 σ pattern subsequence dynamic programming algorithm RSK algorithm standard Young tableau
  • 相关文献

参考文献6

  • 1Apostolico A, Guerra C. The longest common subsequence problem revisited [J]. Algorithmica, 1987,2 (2) : 315-336.
  • 2Fredman M L. On computing the length of longest increasing subsequences[J]. Discrete Mathematics, 1975,11 (1) :29-35.
  • 3Daniel S Hirschberg. Algorithms for the longest common subsequence problem [J]. Journal of the ACM, 1997, 24 (4) : 644- 675.
  • 4Stanley R. Longest alternating subsequences of permutations [EB/OL]. Preprint,2005; math. CO/0511419. http://www- math. mit. edu/-rstan/pubs/
  • 5Stanley R. Increasing and decreasing subsequences and their variants [C/OL]. In: Proceedings of International Congress of Mathematicians 2006 (ICM2006). http://www-math, mlt. edu/-rstan/pubs/
  • 6Stanley R. Alternating permutatlons and symmetric functions, J. Combinatorial Theory (A) [EB/OL]. http ://www- math. mit.edu/-rstan/pubs/, 2006.

同被引文献6

  • 1郑丽英.数据结构Trie及其应用[J].现代计算机,2004,10(8):20-22. 被引量:6
  • 2FREDMAN M L. On computing the length of longest increasing subsequence [ J ]. Discrete Mathematics, 1975, 11(1) :29-35.
  • 3DEOROWICZ Sebastian. An algorithm for solving the longest Increasing circular subsequence problem [ J ]. Information Processing Letters, 2009 (109) :630-634.
  • 4ALBERT M H, GOLYNSKI A, HAMEL A M, et al Longest increasing subsequences in sliding windows [ J ] Theoret Comput Sci, 2004(321 ) :405-414.
  • 5GUSFIELD D. Algorithms on strings, trees, and sequences [ M ]. Cambridge, USA: Cambridge University Press, 1999.
  • 6归泳昆.3字符最长公共弱递增子串的O(nloglogn)算法[J].计算机科学,2008,35(3):264-266. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部