摘要
最长模式子序列问题在生物信息学中有重要的应用.本文首次提出求a=a0a1…an-1∈ωn的最长σ模式子序列的O(n2)时间算法,并对σ≤2的情形推广了RSK算法和标准Young表,对算法作了改进,得到了当σ=1时的O(nlogk)时间算法和当σ=2时的O(n)时间算法.
This paper studies the longest pattern subsequence problem based on the dynamic programming algorithm. An O(n^2) time algorithm for the problem is firstly presented. Then the presented algorithm is improved further by generalizing the RSK algorithm and the standard Young tableau. When |σ| = 1, the time required by the algorithm is improved to O(nlogk). When |σ| =2, the time required by the algorithm is improved to O(n), an optimal algorithm.
出处
《小型微型计算机系统》
CSCD
北大核心
2008年第1期135-138,共4页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(60172017)资助
福建省自然科学基金项目(A0510008)资助