摘要
为了消除铁路轨道检测数据中夹杂的噪声数据对轨道状态评定的影响,利用小波算法对原始数据信息进行分解。通过对分解后得到的高频信息进行分析,即可以找出轨道检测数据中噪声数据出现的规律。然后利用小波消噪方法对检测数据进行处理,得到消噪之后的数据,从而实现数据的恢复。使用Matlab中的小波算法对兰新线某段数据进行分析,实践表明小波算法具有较好的消噪功能。
In order to eliminate the noise data in the railway track test data which was adverse to assess the state of the track, it was used the wavelet algorithm to analysis the original data information. Based on the decomposition of the high frequency information, it was found the rule of the noise data in the railway track test data. By using wavelet algorithm to detect the it would receive the data with less noise thus achieving data recovery. The wavelet algorithm in the Matlab was used to analysis the part of railway track test data of Lanzhou,Xinjiang railway. practice showed that wavelet algorithm had better noise cancellation function.
出处
《铁路计算机应用》
2008年第1期1-3,共3页
Railway Computer Application
基金
北京交通大学校基金项目(2005SM029)。
关键词
轨道检测
噪声剔除
小波算法
正交小波基
track test
noise eliminating
wavelet algorithm
daubechies wavelet