摘要
研究赋范空间E和l^1(Γ)的单位球面之间的等距映射的延拓,得到E和l^1(Γ)的单位球面之间的满等距映射可以延拓为全空间E上的实线性等距算子,从而肯定地回答了相应的Tingley问题.
We study the extension of isometries between the unit spheres of normed space E and l^1(Г). We obtain that any surjective isometry between the unit spheres of normed space E and l^1(Г) can be extended to be a linear isometry on the whole space E, and give an affirmative answer to the corresponding Tingley's problem.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2008年第1期23-28,共6页
Acta Mathematica Sinica:Chinese Series
基金
江苏省教育厅自然科学基金(06KJD110092)