摘要
利用Fourier-Laplace变换对ω-超可微函数空间ε_*(R^N)和ω-试验函数空间D*(R^N)中的乘法和卷积运算进行了讨论,并且证明了D(R^N)是D*(R^N)的乘子空间,在卷积意义下D(R^N)是ε_*(R^N)的乘子空间,且在D*(R^N)中Parseval等式成立.
In this paper, the multiplication and convolution of functions in the ω- ultradifferentiable function spaces ε*(R^N) and ω-test function spaces D*(R^N) are discussed, and it is obtained that D*(R^N) is the multiplier space of D*(R^N), D(R^N) is the multiplier space of ε*(R^N) in the sense of convolution, and the Parseval equation holds in the spaces of D*(R^N).
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2008年第1期61-68,共8页
Acta Mathematica Sinica:Chinese Series
基金
山西省自然科学基金(2006011001)
山西省回国人员基金