期刊文献+

超可微函数空间ε*和D*中的乘法和卷积运算 被引量:8

Multiplications and Convolutions in Ultradifferentiable Function Spaces ε_* and D_*
原文传递
导出
摘要 利用Fourier-Laplace变换对ω-超可微函数空间ε_*(R^N)和ω-试验函数空间D*(R^N)中的乘法和卷积运算进行了讨论,并且证明了D(R^N)是D*(R^N)的乘子空间,在卷积意义下D(R^N)是ε_*(R^N)的乘子空间,且在D*(R^N)中Parseval等式成立. In this paper, the multiplication and convolution of functions in the ω- ultradifferentiable function spaces ε*(R^N) and ω-test function spaces D*(R^N) are discussed, and it is obtained that D*(R^N) is the multiplier space of D*(R^N), D(R^N) is the multiplier space of ε*(R^N) in the sense of convolution, and the Parseval equation holds in the spaces of D*(R^N).
作者 王光 李爱枝
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第1期61-68,共8页 Acta Mathematica Sinica:Chinese Series
基金 山西省自然科学基金(2006011001) 山西省回国人员基金
关键词 加权函数 Fourier-Laplace变换 卷积 weight function Fourier-Laplace transform convolution
  • 相关文献

参考文献17

  • 1Beurling A., Quasi-aualyticity and general distributions, Lectures 4 and 5, AMS Summer Institute, Standford, 1961.
  • 2Petzsche H. J., Vogt D., Almost analytic of ultradifferentiable functions and the boundary values of holomorphic functions, Math. Ann., 1984, 267: 17-35.
  • 3Bjock G., Linear partial differential operators and generalized distributions, Ark. Math., 1965, 6: 351-407.
  • 4Cioranescu I., Zsido L., ω-ultradistributions and their applications to operator theory, LNM 325, Berlin, New York: Sprnger, 1973.
  • 5Komatsu H., Ultradistribuyions Ⅰ., Stracture theorems anda characterization, J. Fac. Sci. Tokyo Sec. IA, 1973, 20: 25-105.
  • 6Komatsu H., Ultradistribuyions Ⅱ, The kernel theorems and ultradistribuyions with support in a submanifold, J. Fac. Sci. Tokyo Sec. IA, 1977, 24: 607-628.
  • 7Meise R., Taylor-B. A., Vogt D., Characterization of the linear partial differential operators with constant coefficients that admidt a continuous linear right inverse, Ann. Inst. Fourier (Grenoble), 1990, 40: 619-655.
  • 8Bonet J., Braun R. W., Meise R., Taylor B. A., Whitney's extension theorem for non-quasianalytic classes of ultradifferentiable functions, Studia Math. 19917 99(2): 155-184.
  • 9Bonet J., Fernandez C., Meise R., Characterization of the ω-hypoelliptic convolution operators on ultradistributions, Ann. Acad. Sci. Fenn. Math., 2000, 25: 261-284.
  • 10Bonet J., Meise R., Ultradistributions of beurling type and projective descriptions, J. Math. Anal. and Appl., 20017 255: 122-136.

同被引文献30

  • 1BRAUN R W, MEISE R, TAYLOR B A. Utradifferentiable functions and Fourier analysis [ J ]. Resuhe Math, 1990 (17) :206- 237.
  • 2MEISE R,TAYLOR B A, VOGT D. Characterization of the linear partial differential operators with constant coefficients that admidt a tinuous linear right inverse [ J ]. Ann. Inst. Fourier( Grenoble), 1990,40:619-655.
  • 3Meie R,TAYLOR B A, VOGT D. Continuous linear right inverses for partial differential operators on non-quasiaualytic classes and on uhradistributions [ J ]. Math. Nachr. , 1996,180,449 -464.
  • 4陈恕行.现代偏微分方程导轮[M].北京:科学出版社,2005.
  • 5Beurling A. Quasi-aualyticity and general distributions Lectures 4 and 5 [M]. AMS SummerIustitute, Standford,1961.
  • 6Bjorck G. Linear partial differential operators and generalized distributions [J]. Ark. Math. , 1965, 6:351 - 407.
  • 7Bonet J, Meise R. Ultradistributions of brurling type and projective descriptions[J]. J. Math. Anal. andAppl, 2001,255:122 - 136.
  • 8Bonet J,Meise R. Quasianalytic functional and projective descriptions[J]. Math. Scand, 2004,94 : 249 - 266.
  • 9Braun RW, Meise R, Taylor B A. Ultradifferentiable functions and Fourier analysis[J]. ResulteMath. , 1990, 17:206 - 237.
  • 10A. Beurling. Quasi -aualyticity and general distributions[J]. Lectures 4 and 5 ,AMS Summer lustitute, Standford. 1961.

引证文献8

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部