期刊文献+

翻滚式探测机器人设计及运动仿真 被引量:2

Design and motion simulation of rolling exploring robot
下载PDF
导出
摘要 针对探测机器人对未知环境探测时易发生倾覆而丧失运动能力的情况,结合探测机器人运行过程中车载仪器需维持一定的姿态角的功能要求,提出了一种翻滚式探测机器人结构。该机器人由八个驱动轮、两个侧向支撑架以及平衡架组成:八个驱动轮保证机器人发生倾覆后仍有四个驱动轮与地面接触,从而不丧失运动能力;侧向支撑架可使机器人发生侧倾后与地面保持较大的倾角,待稳定后借助驱动力恢复至正常姿态,从而恢复运动能力;平衡架可保证车载仪器的横滚角和俯仰角在探测机器人发生倾覆和侧倾时基本不变。针对探测机器人的上述功能,运用ADAMS进行运动仿真,以验证各部件功能的可实现性。仿真结果表明,翻滚式机器人各部件实现了设计功能。 A rolling exploring robot was brought out aimed at the case that the exploring robot listed and capsized in uneven and unknown terrain and lost the mobility.The robot was composed of eight driving wheels, two side supporting frames and balancing frames. The driving wheels could keep the mobility of the robot for they kept four wheels on the ground when the robot capsized.The side supporting s could help recovering the mobility of the robot with drive when the robot listed for it kept a great angle between the robot and ground.The balancing frames could keep the rolling angle and pitching angle of the equipments on the robot in minor change when the robot listed and capsized. Motion simulation was carried out aimed at those functions by means of ADAMS. The feasibility of each parts of the exploring robot is proved by the results of simulation.
机构地区 哈尔滨工业大学
出处 《机械设计与制造》 北大核心 2008年第1期164-166,共3页 Machinery Design & Manufacture
关键词 探测机器人 翻滚式 运动仿真 Exploring robot Rolling Motion simulation
  • 相关文献

参考文献7

二级参考文献20

  • 1刘进长 王全福.发展机器人技术,占领21世纪的经济技术制高点.中南工业大学学报,31(中国2000年机器人学大会论文专辑)[M].长沙,2000.10-14.
  • 2蔡自兴.机器人学的发展趋势和发展战略.中南工业大学学报[M].长沙,2000,31.1-9.
  • 3[美]卡尔·萨根 陈增林(译).宇宙科学传奇[M].河北:河北人民出版社,1984.195-225.
  • 4JOHN E B, WILLIAM L W. Configuration of autonomous walker for extreme terrain [ J ]. The International J of Robotics Research, 1993,12 (6) : 535 - 539.
  • 5BEKKER M G. The development of a moon rover [ J ].Journal of the British Interplanetary, 1985, 38:537 -543.
  • 6SCHILLING K, JUNGIUS C. Mobile robots for planetary exploration[ J]. Control Engineering Practice, 1996, 4(4) : 513 -524.
  • 7YOSHIOKA N, WAKABAYSHI Y. Driving technology and primary tests of a lunar rover[A]. IFAC 13^th Triennial World Congress[ C ]. 1996.
  • 8Bares J, Wettergreen D. Lessons from the development and deployment of Dante Ⅱ[A], Proceedings of the 1997 Field and Service Robotics Conference[C], 1997.
  • 9Van Winnendael M, Visenti G, Bertrand R,rieder R. Nanokhod micro-rover heading towards mars[A]. Proceedings of Fifth International Symposium on Artificial Intelligence, Robotics and Automation in Space(ESA SP-440) [C], 1999,69-76.
  • 10Tunstel E. Evolution of autonomous selfrighting behaviors for articulated manrovers[A]. Proceedings of Fifth International Symposium on Artificial Intelligence, Robotics and Automation in Space (ESA SP-440)[C],1999,341-346.

共引文献65

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部