期刊文献+

结缕草SSR反应体系的正交优化(英文) 被引量:3

Optimization of the SSR Reaction System for Zoysiagrass Using Orthogonal Design
下载PDF
导出
摘要 为了快速获得结缕草(Zoysia japonica)SSR反应体系,采用5因素(模板DNA,Mg^2+,dNTP,Taq酶和引物)4水平正交设计筛选合适的结缕草SSR体系,并通过随机挑选3对Tm相近的引物对该优化体系进行验证。结果表明:正交设计可应用于SSR—PCR反应体系的优化,20μl最佳PCR反应体系中包括2μl 10×buffer、1.0U Taq酶、0.2mM 引物、100ng 模板 DNA、0.2mM dNTP、2.0mM Mg^+;对结缕草进行梯度退火实验,其最佳退火温度为56~58℃;可行扩增程序是:94℃预变性4min、进行35个循环的94℃变性30S、56~58℃退火40S,72℃延伸1min;72℃延伸10min,4℃保存;该最适反应体系的建立,为今后结缕草SSR分析奠定了坚实基础。 In order to obtain the optimal SSR-PCR system for zoysiagrass (Zoysia japonica ), an experimental design of orthogonal diagram L16 (4^5) was employed to evaluate five factors (template DNA, Mge+ , dNTP, Taq DNA polymerase, and primer) at four different levels. Three randomly selected SSR primers (RM84, RM220, RM531) with resembled Tm were used to validate the reaction system. The results indicate that orthogonal design could be used to optimize the SSR-PCR system; the optimal system of terminal volume 20μl consisted of 2μl 10× buffer, 1.0U Taq DNA polymerase, 0. 2 mM primers, 100ng template DNA, 0.2 mM dNTP, and 2.0 mM Mg+. The optimal annealing temperature was determined to be 56-58℃ by gradient PCR; the suitable thermal cycling conditions with initial melting at 94℃ for 4 min, followed by 35 cycles at 94℃ for 30 s, 56-58℃ for 40 s, 72℃ for60 s; then keep the reaction mixture at 4~C after a final extension step of 72℃ for 10 min. The optimized system would be effective as a solid foundation for zoysiagrass SSR analysis.
出处 《草地学报》 CAS CSCD 2008年第1期89-93,102,共6页 Acta Agrestia Sinica
基金 国家自然科学基金项目(30500354)
关键词 结缕草 SSR标记 反应体系 正交设计 优化 Zoysia iaponica Steud. SSR markers Reaction system Orthogonal design Optimization
  • 相关文献

参考文献21

  • 1Duble R L.Turfgrasses:their management and use in the southern zone[M].College Station,TX:Texas A&M University Press,1996
  • 2Forbes I Jr.Chromosome numbers and hybrids in Zoysia[J].Agron.J.,1952,44:147-151
  • 3Arumuganathan K,Tallury S P,Fraser M L,et al.Nuclear DNA content of thirteen turfgrass species by flow cytometry[J].Crop Sci.,1999,39:1518-1521
  • 4White R H,Engelke M C,Anderson S J,et al.Zoysiagrass water relations[J].Crop Sci.,2001,41:133-138
  • 5Brede D.Turfgrass maintenance reduction handbook:sports,lawns,and golf[M].Chelsea,MI:Ann Arbor Press,2000
  • 6Ge Y X,Norton T,Wang Z Y.Transgenic zoysiagrass (Zoysia japonica) plants obtained by Agrobacterium-mediated transformation[J].Plant Cell Rep.,2006,25:792-798
  • 7Spangenberg G,Wang Z Y,Potrykus I.Biotechnology in forage and turf grass improvement[M].Berlin:Springer,1998
  • 8Wang Z Y,Hopkins A,Mian R.Forage and turf grass biotechnology[J].Crit.Rev.Plant Sci.,2001,20:573-619
  • 9Cai H W,Maiko I,Nana Y,et al.Isolation,characterization and mapping of simple sequence repeat markers in zoysiagrass (Zoysia spp.)[J].Theor.Appl.Genet.,2005,112:158-166
  • 10Zietkiewicz E,Rafalski A,Labuda D.Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification[J].Genomics,1994,20:176-183

二级参考文献49

共引文献70

同被引文献47

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部