期刊文献+

独立分量分析及其应用研究 被引量:2

Research on Independent Component Analysis and Its Application
下载PDF
导出
摘要 独立分量分析是近年来兴起的一种高效的信号处理方法,主要解决的问题是从观测到的混合信号中分离或提取各个源信号。简要介绍了独立分量分析的模型、数学原理等基本问题,详细分析了解决独立分量分析问题的优化准则及对应的算法,最后介绍了独立分离分析的主要应用领域,并对独立分量分析问题的研究方向进行了展望。 Independent Component Analysis(ICA) is an efficient technology developed in resent years in signal processing field. This method can separate or extract unknown sources from their mixtures, In this paper, the fundamental model and mathematical principle are introduced, the optimized criteria and related algorithms for ICA are analyzed. Finally, the paper presents the application and future development of ICA.
机构地区 西安通信学院
出处 《现代电子技术》 2008年第3期17-20,共4页 Modern Electronics Technique
关键词 盲源分离 独立分量分析 优化准则 高阶统计 信息论 blind source separation independent component analysis optimized criteria higher order statistics information theoretic
  • 相关文献

参考文献8

  • 1Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis[M]. John Wiley & Sons,Inc. ,2001.
  • 2Comom P. Independent Component Analysis: A New Concept[J].Signal Processing, 1994,36 (3) : 287 - 314.
  • 3Hyvarinen A. A Fast Fixed - point Algorithm for Independent Component Analysis [J].Neural Computation, 1997,7 (9) :1482-1483.
  • 4Bell A J,Sejnowski T J. An Information -maximization Approaeh to Blind Separation and Blind Deeonvolution[J].Neural Computation,1995,7(6) :1129 - 1159.
  • 5Cardoso J F. Infomax and Maximum Likelihood for Blind Souree Separation[J]. IEEE Signal Proeessing Letters, 1997,4(4) :112 - 114.
  • 6Hyvarinen A, Oja E. Independent Component Analysis by General Nonlinear Hebbian - like Learning Rules[J]. Signal Processing, 1998,14(3) :301 - 313.
  • 7Cardoso J F, Souloumiac A. Blind Beamforming for Non- Gaussian Signals[J].IEE Proc. - F, 1993, 140 (6): 362 -370.
  • 8张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211

二级参考文献51

  • 1[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 2[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 3[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 4[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 5[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 6[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 7[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 8[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 9[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.
  • 10[10]Cardoso J F,Souloumiac A.Blind beamfomrming for non-Gaussian signals[J].lEE Proc.-F,1993,140:362-370.

共引文献210

同被引文献5

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部