期刊文献+

麦草纤维在甲酸体系中的水解动力学研究 被引量:7

The Kinetics Study of Wheat Straw Hydrolysis in Formic Acid System
下载PDF
导出
摘要 研究麦草纤维在甲酸体系中的水解动力学;探讨甲酸体系中盐酸浓度、固液比、反应温度、反应时间对麦草纤维水解的影响以及在该体系中葡萄糖的降解情况;分析在该体系中葡萄糖的降解情况,结果表明,葡萄糖的降解反应和纤维素的水解反应相比是个快反应。麦草纤维素在φ=4%盐酸、甲酸体系中的水解速率60℃时为0.019 0 h-1,65℃时为0.032 5 h-1,70℃时为0.068 3 h-1,75℃时为0.093 1 h-1;葡萄糖的降解速率60℃时为0.028 5 h-1,65℃时为0.044 8 h-1,70℃时为0.109 8 h-1,75℃时为0.143 6 h-1。麦草纤维水解的Arrhenius方程指前因子为:9.12×1014h-1;葡萄糖降解的Arrhenius方程指前因子为:7.08×1015h-1。麦草纤维水解的表观活化能为106.35 kJ/mol;葡萄糖的降解表观活化能为111.00 kJ/mol。 Wheat straw was hydrolyzed with formic acid and hydrochloric acid under mild conditions. The effects of concentration of hydrochloric acid, the ratio of solid and liquor, temperature (60 -75℃ ) and retention time (0 - 9 h), the concentration of glucose were analyzed. The degradation of glucose was also studied. The results indicated that the degradation of glucose was a fast reaction. The tendency was more obvious with the increase of temperature. The velocities of wheat straw hydrolysis were 0. 019 0 h^-1 at 60 ℃ , 0. 032 5 h^-1 at 65 ℃, 0. 068 3 h^-1 at 70 ℃, 0. 093 1 h^-1 at 75 ℃. The velocities of glucose degradation were 0.028 5 h^-1 at 60 ℃, 0.044 8 h^-1 at 65 ℃, 0. 109 8 h^-1 at 70 ℃, 0, 143 6 h^-1 at 75 ℃. The activation energy of microcrystalline cellulose hydrolysis was 106.35 kJ/mol; the activation energy of glucose degradation was 111.00 kJ/mol.
出处 《江西农业大学学报》 CAS CSCD 北大核心 2008年第1期154-159,共6页 Acta Agriculturae Universitatis Jiangxiensis
基金 教育部重大科研资助项目(750548)
关键词 麦草纤维素 水解 动力学 wheat straw hydrolysis kinetics
  • 相关文献

参考文献24

  • 1Rostrup - Nielsen J R. Making fuels from biomass [J]. Science, 2005, 308:1 421 - 1 422.
  • 2Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production [ J]. Bioresource Technology, 2002, 83 (1) : 1 -11.
  • 3Mielenz J R. Ethanol production from biomass:Technology and commercialization status[ J]. Ecology and Industrial Microbiology, 2001, 4(3) : 324 -329.
  • 4Zhu S, Wu Y, Yu Z, et al. Pretreatment by mlcrowave/alkall of rice straw and its enzymicy drolysis [J]. Process Biochem istry,2005, 49:3 882-3 086.
  • 5Zhang Y - H P, Himmel M E, Mielenz J R. Outlook for cellulase improvement: Screening and selection strategies [ J]. Biotechnology Advances,2006, 24 :452 - 481.
  • 6Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass [ J]. Bioresource Technology, 2005, 96 : 673 - 686.
  • 7Silverstein R A, Chen Y, Sharma - Shivappa R R, et al. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks [ J]. Bioresource Technology, 2006, 5. 1 -12.
  • 8William S M, Michael J A. Productive and parasitic pathways in dilute acid catalyzed hydrolysis of cellulose [J]. Industry Engineering Chemistry Research, 1992, 31 (1) : 94 -100.
  • 9Maloney M T, Chapman T W, Baker A J. Dilute acid hydrolysis of paper birch: Kinetic study of xylan and acetyl - group hydrolysis [ J]. Bioteehnology and Bioengineering, 1985,27 (3) :355 - 361.
  • 10Abatzoglou N, Chornet E, Belkaeemi K, et al. Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosics fractionation [J].Chemical Engineering Science, 1992, 47 (5): 1109-1122.

同被引文献79

引证文献7

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部