期刊文献+

基于功能度量法的概率优化设计的收敛控制 被引量:3

CONVERGENCE CONTROL OF PROBABILISTIC STRUCTURAL DESIGN OPTIMIZATION BASED ON PERFORMANCE MEASURE APPROACH
下载PDF
导出
摘要 概率结构优化设计(PSDO)中概率约束的评定可以采用最近提出的、被认为更高效、稳定的功能度量法(PMA).改进均值(AMV)迭代格式经常在PMA中使用,但它对一些非线性功能函数或非正态随机变量,搜索最小功能目标点时可能陷入周期振荡或混沌解,从而使PSDO的两层次算法或序列近似规划算法优化计算失败.利用混沌反馈控制的稳定转换法对功能度量法的AMV迭代格式实施了收敛控制,使嵌入周期和混沌轨道的不稳定不动点稳定化,获得稳定收敛解,从而使概率约束的评定能正常进行;再由两层次算法或序列近似规划算法进行结构优化设计.算例结果表明了稳定转换法实施收敛控制的有效性,以及序列近似规划算法相对高效的优点. The evaluation of probabilistic constraints in Probabilistic Structural Design Optimization (PSDO) can be carried out using the recently proposed performance measure approach (PMA). The advanced mean-value (AMV) method is well suitable for PMA due to its simplicity and efficiency. However, when the AMV iterative scheme is applied to search for the minimum performance target point for some nonlinear performance functions, the iterative sequences could fall into the periodic oscillation and even chaos. Then both PMA Two-level and PMA with sequential approximate programming (SAP), which are based on this evaluation of probabilistic constraints, could yield convergent failure. In the present paper, the convergence control of AMV iterative procedure is first implemented by using the stability transformation method of chaos feedback control. The unstable fixed points embedded in the periodic and chaotic orbit are stabilized and the expected stable convergent solutions are obtained. Once the evaluation of probabilistic constraints can be carried out successfully, the design optimization is performed by PMA Two-level or PMA with SAP. The numerical results demonstrate that the convergence control using the stability transformation method is effective and PMA with SAP is more efficient.
作者 易平 杨迪雄
出处 《力学学报》 EI CSCD 北大核心 2008年第1期128-134,共7页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10332010,10672030) 国家重点基础研究发展计划(2006CB601205)资助项目.~~
关键词 概率结构优化设计 功能度量法 AMV迭代格式 序列近似规划 混沌动力学 稳定转换法 probabilistic structural design optimization, performance measure approach, AMV iterative procedure, sequential approximate programming, chaotic dynamics, stability transformation method
  • 相关文献

参考文献11

  • 1Tu J, Choi KK, Park YH. A new study on reliability-based design optimization. Journal of Mechanical Design, 1999, 121(4): 557-564
  • 2Youn BD, Choi KK, Du L. Enriched performance measure approach for reliability-based design optimization. AIAA Journal, 2005, 43(4): 874-884
  • 3Youn BD, Choi KK. An investigation of nonlinearity of reliability-based design optimization approaches. Journal of Mechanical Design, 2004, 126:403-411
  • 4Cheng GD, Xu L, Jiang L. Sequential approximate programming strategy for reliability-based optimization. Computers and Structures, 2006, 84(21): 1353-1367
  • 5Yi P, Cheng GD. Further Study on Efficiency of Sequential Approximate Programming for Probabilistic Structural Design Optimization. Structural and Multidisciplinary Optimization, online available:http://dx.doi.org/10.1007/s00158-007-0120-8.
  • 6Youn BD, Choi KK, Park YH. Hybrid analysis method for reliability based design optimization. ASME Journal of Mechanical Design, 2003, 125(3): 221-232
  • 7Yang DX, Li G, Cheng GD. Convergence analysis Of first order reliability method using chaos theory. Computers and Structures, 2006, 84(8-9): 563-571
  • 8杨迪雄.结构可靠度分析FORM迭代算法的混沌控制[J].力学学报,2007,39(5):647-654. 被引量:8
  • 9Yang DX, Yi P. Convergent control of iterative procedure for reliability based design optimization by stability transformation. In: Proceedings of 7th World Congress of Structural and Multidisciplinary Optimization, May 21-25, 2007, Seoul, Korea
  • 10Schmelcher P, Diakonos FK. Detecting unstable periodic orbits of chaotic dynamical systems. Physical Review Letters, 1997, 78(25): 4733-4736

二级参考文献16

  • 1杨迪雄,许林,李刚.结构可靠度FORM方法的混沌动力学分析[J].力学学报,2005,37(6):799-804. 被引量:9
  • 2Melchers RE.Structural Reliability Analysis and Prediction (2nd Edition).Chichester:Ellis Horwood Limited Publishers,1999
  • 3Liu PL,Kiureghian AD.Optimization algorithms for structural reliability.Structural Safety,1991,9:161-177
  • 4Wang LP,Grandhi RV.Efficient safety index calculation for structural reliability analysis.Computers and Structures,1994,52(1):103-111
  • 5Wang LP,Grandhi RV.Safety index calculation using intervening variables for structural reliability analysis.Computers and Structures,1996,59(6):1139-1148
  • 6Yang DX,Li G,Cheng GD.Convergence analysis of first order reliability method using chaos theory.Computers and Structures,2006,84(8-9):563-571
  • 7Yang DX,Li G.Discussion of paper:A mathematical basis of convergence of the capacity spectrum method.Earthquake Engineering and Structural Dynamics,2006,35(8):1051-1052
  • 8Schmelcher P,Diakonos FK.Detecting unstable periodic orbits of chaotic dynamical systems.Physical Review Letters,1997,78(25):4733-4736
  • 9Pingel D,Schmelcher P,Diakonos FK.Stability transformation:a tool to solve nonlinear problems.Physics Reports,2004,400:67-148
  • 10Davidchack RL,Lai YC.Efficient algorithm for detecting unstable periodic orbits in chaotic systems.Physical Review E,1999,60(5):6172-6175

共引文献7

同被引文献27

  • 1Hasofer A M,Lind N C. Exact and invariant second- moment code format[J]. Journal of the Engineering Mechanics Division, 1974,100(1) : 111-121.
  • 2Tu J,Choi K K,Park Y H. A new study on reliability- based design optimization[J]. Journal of Mechanical Design, 1999,121 (4) : 557-564.
  • 3Der Kjureghian, Zhang Y, Li C C. Inverse reliability problem[J]. ASCE Journal of Engineering Mecha- nics, 1994,120(5) : 1154-1159.
  • 4Li H,Foschi R O. An inverse reliability method and its application [J]. Structural Safety, 1989,20: 257- 270.
  • 5Lee T W, Kwak B M. A reliability-based optimal de- sign using advanced first order second moment mthod [J]. Mech Struct Safety, 1998,20 : 257-270.
  • 6Kirjner-Neto C, Polak E, Kijurehian A D. An outer approximations approach to reliability-based optimaldesign of structures[J]. Journal of Optimization The- ory and Applications, 1998,98 ( 1 ) : 1-16.
  • 7Youn B D, Choi K K, Park Y H. Hybird analysis method for reliability-based design optimization[]]. J Mech Des,ASME,2003,125(2) :221-232.
  • 8Youn B D,Choi K K. An investigation of nonlinearity of reliability-based design optimization approaches [J]. Journal of Mechanical Design, 2004,126: 403- 411.
  • 9Wu Y T,Millwater H R,Cruse T A. Advanced prob- abilistic structural analysis method for implicit per- formance functions[]]. AIAA Journal, 1990,9 : 1663.
  • 10Youn B D, Choi K K, Du L. Enriched performance measure approach for reliability-based design optimi- zation[J]. AIAA Journal, 2005,43(4) : 874-884.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部