期刊文献+

运用离子选择性电极研究氟离子与蛋白质的相互作用 被引量:7

Study on the Interactions of Fluoride Ion with Proteins Using Ion-selective Electrode
下载PDF
导出
摘要 在醋酸-醋酸钠缓冲溶液中(pH=5.68),运用氟离子选择性电极研究了288~308K时F-与牛血清蛋白(BSA)、牛血红蛋白(BHb)和卵清蛋白(OVA)的相互作用.F-和3种蛋白质相互作用体系的实验数据通过Klotz方程进行处理,得到了很好的线性关系,根据拟合的直线得到了F-在3种蛋白分子上的束缚位点数以及相应的束缚常数.结果表明,F-在BSA和BHb分子上的束缚位点数随着温度的升高而增大,而在OVA分子上的束缚位点数随着温度的升高而减小.另外,F-与BSA和BHb作用的束缚常数随着温度的升高,先减小后增大;而与OVA的束缚常数则表现出相反的规律,即先增大后减小.根据蛋白质分子二级结构的差别,对上述现象进行了合理的解释.运用热力学方程计算出了不同温度下每个束缚过程的热力学函数(△G,△H,△S),说明F-和蛋白质分子之间主要依靠静电作用力相结合. The interactions of fluoride with bovine serum albumin (BSA), bovine hemoglobin (BHb) and ovalbumin (OVA) were studied in acetate buffer (pH=5.68), at 288, 298 and 308 K, using a fluoride ion-selective electrode. The data for the fluoride-protein systems were treated according to the Klotz equation, and the number of binding sites and the binding constants were found. It was shown that the number of fluoride-binding sites (n) in BSA and BHb increases with increasing temperature, while for OVA, the value of n decreases under the same condition. At the same time, our studies indicate that the binding constants of BSA and BHb systems first decrease and then increase with increasing temperature. While for OVA, the results are reverse. These were reasonably interpreted with the structural and thermodynamic factors. The thermodynamic function changes of the binding process (ΔGe, ΔHe, ΔSe) at different temperatures were calculated with thermodynamic equations, which show that the binding power between F- and proteins is mainly an electrostatic interaction.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2008年第1期10-14,共5页 Acta Chimica Sinica
基金 国家自然科学基金(No.20673034) 教育部高等学校博士学科点专项科研基金(No.20060476001)资助项目
关键词 离子选择性电极 氟离子 牛血清蛋白 牛血红蛋白 卵清蛋白 束缚 ion-selective electrode fluoride bovine serum albumin bovine hemoglobin ovalbumin binding
  • 相关文献

参考文献18

  • 1Pacheco, M. T. B.; Carraro, F.; Sgarbieri, V. C. Food Chem. 1999, 66, 249.
  • 2Alizadeh, N.; Ranjbar, B.; Mahmodian, M. Colloids Surf. A: Physicochem. Eng. Asp, 2003, 212, 211.
  • 3Alberty, R. A.; Marvin, N. N. J. Am. Chem. Soc. 1951, 73, 3220.
  • 4Scatchard, G.; Coleman, J. S.; Shen, A. L. J. Am. Chem. Soc. 1957, 79, 12.
  • 5Scatchard, G.; Wu, Y. V.; Shen, A. L. J. Am. Chem. Soc. 1959, 81, 6104.
  • 6De Rosa, M. C.; Castagnola, M.; Bertonati, C.; Galtieri, A.; Glardina, B. Biochem. J. 2004, 380, 889.
  • 7Deep, S.; Ahluwalia, J. C. Phys. Chem. Chem. Phys. 2001, 3, 4583.
  • 8Luehrs, D. C.; Johnson, W. C. Fluoride 1986, 19, 86.
  • 9Sideris, N. N.; Valsami, G. N.; Koupparis, M. A.; Macheras, P. E. Eur. J. Pharm. Sci. 1999, 7, 271.
  • 10Ayranci, E. Food Chem. 1995, 54, 173.

二级参考文献5

共引文献82

同被引文献95

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部