期刊文献+

基于非负矩阵分解新的人脸识别方法 被引量:11

Novel Methods of Face Recognition Based on Non-negative Matrix Factorization
下载PDF
导出
摘要 非负矩阵分解是一个新的特征提取方法,基于非矩阵分解的理论,提出了具有正交性的投影轴的计算方法和具有统计不相关性的投影轴的计算方法。与原非负矩阵分解方法,提出的方法在某种程度上是降低了特征矢量之间的统计相关性,并且提高识别率。通过在ORL人脸库和YALE人脸库上进行实验,结果表明提出的两种特征提取方法在识别率方面整体上好于原非负矩阵分解特征提取(NMF)方法,甚至超过主成分分析(PCA)法。 Non-negative matrix factorization (NMF) is a new feature extraction method. Based on the Non-negative matrix factorization (NMF), a new algorithm of orthogonal projection axis and a new algorithm of statistically uncorrelated projection axis for feature extraction were proposed, Compared with original NMF method, the proposed methods are better in terms of reducing or eliminating the statistical correlation between features and improving recognition rate. The experimental results on Olivetti Research Laboratory (ORL) face database and YALE face database show that the new methods are better than original NMF in terms of recognition rate and even outperform PCA.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第1期111-116,共6页 Journal of System Simulation
基金 国家自然科学基金资助项目(60472060) 江苏省高校自然基金项目(06KJD520085) 南京林业大学人才基金资助项目(2002-10)
关键词 非负矩阵分解 正交投影轴 统计不相关性 特征提取 人脸识别 non-negative matrix factorization orthonormal projection axis statistical uncorrelation feature extraction face recognition
  • 相关文献

参考文献13

  • 1Lee D D,Seung H S.Leaming the parts of objects by non-negative matrix factorization[J].Nature (S0028-0836),1999,401(21):788-791.
  • 2Turk M,Pentland A.Eigenfaces for Recognition[J].Journal of Cognitive Neuroscience (S0898-929X),1991,3(1):71-86.
  • 3Turk M,Pentland A.Face Recognition Using Eigenfaces[C]// Proc.IEEE Conf.on Computer Vision and Pattern Recognition,Maui:IEEE,1991:586-591.
  • 4Li S Z,Hou X W,Zhang H J.Learning spatially localized,parts-based representation[C]// Int.Conf.Computer Vision and Pattern Recognition,Washington,USA:IEEE Computer Society,2001:207-212.
  • 5Buciu Ioan,Pitas Ioannis.Application of non negative and local non negative matrix factorization to facial expression recognition[C]// Proceedings of the 17th International Conference on Pattern Recognition (ICPR'04),Washington,USA:IEEE Computer Society,2004:288-291
  • 6Chen X,Gu L,Li S Z,et al.Learning representative local features for face detection[C]// IEEE Proceedings of Computer Vision and Pattern Recognition,Kauai,USA:IEEE,2001:1126-1131.
  • 7Zafeiriou S,Tefas A,Pitas I.Discriminant NMFfaces for Frontal Face Verification[C]//.Machine Learning for Signal Processing (MLSP 2005),Mystic.USA:IEEE,2005:355-359.
  • 8Lee D D,Seung H S.Algorithms for non-negative matrix factorization[C]// Proceedings of Neural Information Processing Systems,Cambridge,MA:MIT Press,2001,(13):556-562.
  • 9Feng T,Li S Z,Shum H Y,Zhang H J.Local Non-Negative Matrix Factorization as a Visual Representation[C]// Proceedings of the 2nd International Conference on Development and Learning (IEEE ICDL.02).Cambridge,USA:IEEE Computer Society,2002:178-183.
  • 10Golub G H,Van Loan C F.Matrix Computations[M].3rd ed.Baltimore,MD:John Hopkins Univ.Press,1996.

共引文献9

同被引文献110

引证文献11

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部