期刊文献+

非线性滤波算法在无源双基地雷达目标跟踪中的比较研究 被引量:8

Comparison of Nonlinear Filtering for Passive Bistatic Radar Target Tracking
下载PDF
导出
摘要 针对无源双基地雷达目标跟踪问题,仿真分析了EKF、UKF、CDF等几种非线性滤波算法的状态估计性能。同时,基于后向平滑估计原理,利用当前观测数据平滑估计前时刻状态变量的均值和方差,提出了一种改进的UKF(CDF)滤波算法-BSUKF/CDF。仿真结果表明,在理想高斯白噪声情况下,UKF/CDF及BSUKF/CDF的跟踪性能相近,但均明显优于EKF;但若考虑角闪烁噪声,BSUKF/CDF的跟踪性能则优于UKF/CDF及EKF。 For passive bistatic radar target tracking problem, the performances of several nonlinear filtering algorithms such as EKF, UKF and CDF were simulated and analyzed. Also, a new nonlinear filtering algorithm called BSUKF/CDF based on backward-smoothing principle was proposed. In BSUKF/CDF algorithm, the current observation was used to smoothly estimate the previous mean and covariance of the state variable. The simulation results show that in Gaussian environment, BSUKF/CDF and UKF/CDF have almost the same tracking performance, and both perform better than EKF; however in angle glint noise environment, BSUKF/CDF perform much better than UKF/CDF and EKF .
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第1期128-131,共4页 Journal of System Simulation
基金 武器装备预研重点基金项目(6140550)
关键词 无源双基地雷达 目标跟踪 无敏卡尔曼滤波 中心差分滤波 后向平滑 passive bistatic radar target tracking unscented kalman filter (UKF) central difference filter (CDF) backwardsmoothing (BS)
  • 相关文献

参考文献8

  • 1J Baniak,G Baker,A M Cunningham,L Martin.Silent SentryTM:passive surveillance,Tech.Rep.[R].Gaithersburg,MD:Lockheed Martin Mission Systems,1999.
  • 2Julier S J,Uhlmann J K.A General Method for Approximating Nonlinear Transformations of Probability Distributions[R]// Technical report.UK:PRG,Dept.of Engineering Science,University of Oxford,1996.
  • 3Gordon N.J.,Salmond D.J.,Smith A.F.M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings (S0-7803-2914-7),1993,140(2):107-113.
  • 4M Norgaard,N K Poulsen,O Ravn.Advances in derivative-free state estimation for non-linear systems[R]// Technical Report IMM-REP-1998-15 (revised edition).Denmark:Technical University of Denmark,April 2000.
  • 5T Lefebvre,H Bruyninckx,J De Schutter.Kalman Filters for Nonlinear Systems:a Comparison of Performance[R]// Internal Report 01R033.Germany:Kaatholieke Universiteit Leuven,Oct.2001.
  • 6R van der Merwe.Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models[D].PhD thesis.USA:University of Washington,2004.
  • 7Rudolph van der Merwe.The Unscented Particle Filter[R].Technical Report CUED/F-INFENF TR 380,Aug.2000.
  • 8Kostantinos N P,Dimitris H.Advanced signal processing handbook[K].Boca Raton:CRC Press LLC,2001.

同被引文献48

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部