期刊文献+

无限正则p-群 被引量:2

Infinite Regualr p-Groups
下载PDF
导出
摘要 对一类无限正则p-进行了研究,得到了一个正则的局部幂零P-群G如果满足|G:(?)_1(G)|<∞,那么G是幂零的且G是可除阿贝尔P-群被有限群的扩张.进而,还研究了一类无限的非正则p-群,但它的所有真商群或者真的无限子群是正则群.在假设这类群存在拟循环子群的情况下,在定理1.2和1.3给出了这类群的结构的刻画. This paper proves that if a locally nilpotent p-group with |G: 1(G)|〈∞ is also regular, then G is nilpotent and G is an extension of a divisible Abelian p-group by a finite p-group. Furthermore, some infinite irregular p-groups in which all proper infinite p-subgroups or proper quotients of G are regular are studied.
出处 《数学年刊(A辑)》 CSCD 北大核心 2007年第6期827-834,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10771172) 重庆市自然科学基金(No.2005BB8096)资助的项目.
关键词 Cernikov P-群 拟循环P-群 正则P-群 Cernikov p-groups, Quasicyclic p-groups, Regular p-groups
  • 相关文献

参考文献9

  • 1Hall P., A contribution to the theory of groups of prime power order [J], Proc. London Math. Soc., 1933, 36(2):29-95.
  • 2Huppert B., Finite Group [M], New York: Springer-Verlag, 1967, 393 -396.
  • 3Ol'sanskii A. Ju, Infinite groups with cyclic subgroups [J], Dokl. Akad. Nauk SSSR, 1979, 245(4):785-787.
  • 4Robinson D. J. S., Finiteness Condition and Generalied Soluble Groups Ⅱ[M], New York: Springer-Verlag, 1972:125-126.
  • 5L/i Heng, Duan Zeyong and Chen Guiyun, On hypercentral group G with │G : n(G)│ < ∞[J], Commun. in Algebra, 2006, 34(5):1803-1810.
  • 6Mann A., Regular p-groups [J], Israel J. Math., 1971, 10(4):471-477.
  • 7Mann A., Regular p-groups [J], Israel J. Math., 1973, 14(3):294-303.
  • 8Menegazzo F. and Stonehewer S., On the automorphism group of a nilpotent p-group [J], J. London Math. Soc., 1985, 31(2):272-276.
  • 9Robinson D. J. S., A Course in the Theory of Groups [M], New York: Springer-Verlag, 1980, 106-107.

同被引文献13

  • 1徐明曜.有限群导引[M].北京:科学出版社,2001.
  • 2Hall P. A Contribution to the Theory of Groups of Prime Power Order[J]. Proc London Math Soc,1933, 36(2):29-95.
  • 3Huppert B. Finite Group[M]. Berlin: Springer-Verlag,1967.
  • 4Mann A. Regular p-Groups[J]. Israel J Math,1971, 10(4) :471-477.
  • 5Mann A. Regular p-Groups[J]. Israel J Math,1973, 14(3) :294-303.
  • 6Menegazzo F, Stonhewer S. On the Automorphism Group of a Nilpotent p-Group[J]. J London Math Soc, 1985,31 (2): 272-276.
  • 7Alperin J L. On a Special Class of Regular p-Groups[J]. Tran Amer Math Soc , 1963,106 : 77-99.
  • 8Hall P. A contribution to the theory of groups of prime power order[J]. Proc London Math Soc ,1933,36(2) : 29-95.
  • 9Huppert B. Finite Group[M]. Berlin: Springer-Verlag, 1967.
  • 10Robinson D J S. A Course in the Theory of Groups [M]. New York : Springer-Verlag, 1980.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部