期刊文献+

C^*-代数的迹迹秩

Tracially Tracial Rank of C^*-Algebras
下载PDF
导出
摘要 引入C^*-代数迹迹秩的概念,讨论它的基本性质.另外,迹迹秩为零和迹拓扑秩为零的C^*-代数等价,同时讨论这类代数的拟对角扩张性质.设O→I→A→A/I→O是拟对角扩张的短正合列,证明如果TTR(I)≤k且TTR(A/I)=0,则TTR(A)≤k. This paper introduces tracially tracial rank of C^*-algebra, and discusses some basic properties of this kind of C^*-algebra. TTR(A)=0 is equivalent to TR(A)=0. Other- wise, the authors discuss the quasidiagonal extension property of this kind of C^*-algebra. Suppose O→I→A→A/I→O be a short exact sequence of quasidiagonal extension, the authors prove that TTR(A)≤k if TTR(I)≤k and TTR(A/I)=O. Keywords
出处 《数学年刊(A辑)》 CSCD 北大核心 2007年第6期835-842,共8页 Chinese Annals of Mathematics
关键词 C^*-代数 迹迹秩 拟对角扩张 C^*-algebras, Tracially tracial rank, Quasidiagonal extension
  • 相关文献

参考文献5

  • 1Lin H., The tracial topological rank of C^*-algebras [J], Proc. London Math. Soc., 2001, 83:199-234.
  • 2Lin H., Classification of simple C^*-algebras with tracial topological rank zero [J], Duke J. Math., 2004, 125:91-119.
  • 3Hu S., Lin H. and Xue Y., The tracial topological rank of extensions of C^*-algebras [J], Math. Scand., 2004, 94:125-147.
  • 4Hu S., Lin H. and Xue Y., The tracial topological rank of C^*-algebras (Ⅱ) [J], J. Indiana Univ., 2004, 53(6):1577 1603.
  • 5Lin H., An introduction to the classification of amenable C^*-algebras [M], N J, London/Hong Kong/Bangalor: World Scientific, 2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部