摘要
引入C^*-代数迹迹秩的概念,讨论它的基本性质.另外,迹迹秩为零和迹拓扑秩为零的C^*-代数等价,同时讨论这类代数的拟对角扩张性质.设O→I→A→A/I→O是拟对角扩张的短正合列,证明如果TTR(I)≤k且TTR(A/I)=0,则TTR(A)≤k.
This paper introduces tracially tracial rank of C^*-algebra, and discusses some basic properties of this kind of C^*-algebra. TTR(A)=0 is equivalent to TR(A)=0. Other- wise, the authors discuss the quasidiagonal extension property of this kind of C^*-algebra. Suppose O→I→A→A/I→O be a short exact sequence of quasidiagonal extension, the authors prove that TTR(A)≤k if TTR(I)≤k and TTR(A/I)=O. Keywords
出处
《数学年刊(A辑)》
CSCD
北大核心
2007年第6期835-842,共8页
Chinese Annals of Mathematics
关键词
C^*-代数
迹迹秩
拟对角扩张
C^*-algebras, Tracially tracial rank, Quasidiagonal extension