期刊文献+

带不同分布增量的随机和的局部渐近性 被引量:3

Local Asymptotics for Random Sums with Different Distribused Increments
下载PDF
导出
摘要 在Asmussen,Foss and Korshunov(J.Theoretical Probab.,2003,16(2):489-518)的基础上,讨论了支撑在(-∞,∞)上的不同分布的卷积的封闭性及带上述不同分布增量的局部渐近性.上述分布包括了常见的轻尾分布和重尾分布. On the basis of Asmussen, Foss and Korshunov (J. Theoretical Probab., 2003, 16(2):489-518), the authors study the closure for convolutions of the different distributions on (-∞,∞) and the local asymptotics for random sums with different distributed increments. The distributions include the common light-tailed distributions and heavy-tailed distributions.
出处 《数学年刊(A辑)》 CSCD 北大核心 2007年第6期867-878,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10671139) 苏州科技学院科研基金资助的项目.
关键词 广义局部次指数分布 卷积封闭性 局部渐近性 Extensively local subexponential distributions, Closure of convolutions, Local asymptotics
  • 相关文献

参考文献8

  • 1Asmussen S., Kalashnikov V., Konstantinides D., et al., A local limit theorem for random walk maxima with heavy tails [J], Statist. Prob. Lett., 2002, 56:399- 404.
  • 2Asmussen S., Foss S. and Korshunov D., Asymptotics for sums of random variables with local subexponential behavior [J], J. Theoret. Probab., 2003, 16(2):489- 518.
  • 3Ng K. W. and Tang Q., Asymptotic behavior of tail and local probabilities for sums of subexponential random variables [J], d. Appl. Prob., 2004, 41:108-116.
  • 4Wang Y., Cheng D. and Wang K., The closure of local subexponential distribution class under convolution roots and its applications to the compound poisson process [J], J. Appl. Prob., 2004, 42:1194--1203.
  • 5Wang Y., Yang Y., Wang K., et al., Some new equivalent conditions on asymptotics and local asymptotics for random sums and their applications [J], Insurance: Mathematics and Economics, 2007, 40:256-266.
  • 6Bingham N. H., Goldie C. M. and Teugels J. L., Reqular Variation [M]. London: Cambrige Press, 1987.
  • 7Tang Q. and Tsitsiashvili G., Precise estimates for the ruin probbility in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks [J], Stochastic Process. Appl., 2003, 108:299-325.
  • 8Embrechts P. and Goldie C. M., On convolution tails [J], Stochastic Process. Appl., 1982, 13:263-278.

同被引文献32

  • 1Yue Bao WANG,Kai Yong WANG,Dong Ya CHENG.Precise Large Deviations for Sums of Negatively Associated Random Variables with Common Dominatedly Varying Tails[J].Acta Mathematica Sinica,English Series,2006,22(6):1725-1734. 被引量:19
  • 2王开永,王岳宝,张雅文.广义次指数族的卷积根的封闭性[J].应用数学,2007,20(1):47-52. 被引量:4
  • 3Asmussen S. Applied probability and queues [M]. 2nd ed, New York: Springer-Verlag, 2003.
  • 4Feller W, Orey S. A renewal theorem [J]. J Math Mech, 1961, 10(4):619-624.
  • 5Feller W. An introduction to probability theory and its applications [M]. Vol 2, 2nd ed, New York: Wiley, 1971.
  • 6Asmussen S, Foss S, Korshunov D. Asymptotics for sums of random variables with local subexponential behavior [J]. J Theor Prob, 2003, 16(2):489-518.
  • 7Gao Q, Wang Y. Ruin probability and local ruin probability in the random multi- delayed renewal risk model [J]. Statist Probab Left, 2009, 79(5):588-596.
  • 8Chistyakov V P. A theorem on sums of independent positive random variables and its applications to branching process [J]. Theory Probab Appl, 1964, 9(1):640-648.
  • 9Chover J, Ney P, Wainger S. Degeneracy properties of subcritical branching processes [J]. Ann Probab, 1973, 1(4):663-673.
  • 10Chover J, Ney P, Wainger S. Functions of probability measures [J]. J Analyse Math, 1973, 26(2):255-302.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部