摘要
On the basis of model tests, potential flow theory, and viscous Computational Fluid Dynamics (CFD) method, the hydrodynamic interactions between two underwater bodies were investigated to determine the influencing factors, changing rule, interaction mechanism, and appropriate methods describing them. Some special phenomena were discovered in two series of near-wall interaction experiments. The mathematical model and predicting methods were presented for interacting forces near wall, and the calculation results agreed well with the experimental ones. From the comparisons among numerical results with respect to nonviscosity, numerical results with respect to viscosity, and measured results, data on the influence of viscosity on hydrodynamic interactions were obtained. For hydrodynamic interaction related to multi-body unsteady motions with six degrees of freedom that is difficult to simulate in tests, numerical predictions of unsteady interacting forces were given.
On the basis of model tests, potential flow theory, and viscous Computational Fluid Dynamics (CFD) method, the hydrodynamic interactions between two underwater bodies were investigated to determine the influencing factors, changing rule, interaction mechanism, and appropriate methods describing them. Some special phenomena were discovered in two series of near-wall interaction experiments. The mathematical model and predicting methods were presented for interacting forces near wall, and the calculation results agreed well with the experimental ones. From the comparisons among numerical results with respect to nonviscosity, numerical results with respect to viscosity, and measured results, data on the influence of viscosity on hydrodynamic interactions were obtained. For hydrodynamic interaction related to multi-body unsteady motions with six degrees of freedom that is difficult to simulate in tests, numerical predictions of unsteady interacting forces were given.