摘要
对任意正整数q1和q2,记E1={argz=θj|0≤θ1<θ2<…<θq1<2π}及E2={argz=φj|0≤φ1<φ2<…<φq2<2π},若E1∩E2=Φ.则(i)对任意正整数μ,存在复平面上下级为μ的无穷级亚纯函数f(z),恰以E1∪E2为其T方向且恰以E1为其Borel方向.(ii)存在复平面上的下级为无穷的亚纯函数f(z),恰以E1∪E2为其Borel方向且恰以E1为其T方向.
Let q1 and q2 be any positive integers. Assume that
E1={argz=θj|0≤θ1〈θ2〈…〈θq1〈2π}
E2={argz=φj|0≤φ1〈φ2〈…〈φq2〈2π}
such that E1 ∩ E2 =φ. Then (1) for any positive number μ, there exists a meromorphic function f(z) of lower order μ and infinite order, which takes the E1 ∪ E2 as its T direction and E1 as its Borel derection.(2) there exists a meromorphic function f(z) of infinite lower order, which takes the E1 ∪ E2 as its Borel direction and E1 as its T direction.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第12期27-33,共7页
Journal of Southwest University(Natural Science Edition)
关键词
无穷级亚纯函数
T方向
BOREL方向
Meromorphic function of infinite order
T direction
Borel direction