期刊文献+

无穷级亚纯函数的T方向和Borel方向 被引量:8

T Direction and Borel Direction of Meromorphic Functions of Infinite Order
下载PDF
导出
摘要 对任意正整数q1和q2,记E1={argz=θj|0≤θ1<θ2<…<θq1<2π}及E2={argz=φj|0≤φ1<φ2<…<φq2<2π},若E1∩E2=Φ.则(i)对任意正整数μ,存在复平面上下级为μ的无穷级亚纯函数f(z),恰以E1∪E2为其T方向且恰以E1为其Borel方向.(ii)存在复平面上的下级为无穷的亚纯函数f(z),恰以E1∪E2为其Borel方向且恰以E1为其T方向. Let q1 and q2 be any positive integers. Assume that E1={argz=θj|0≤θ1〈θ2〈…〈θq1〈2π} E2={argz=φj|0≤φ1〈φ2〈…〈φq2〈2π} such that E1 ∩ E2 =φ. Then (1) for any positive number μ, there exists a meromorphic function f(z) of lower order μ and infinite order, which takes the E1 ∪ E2 as its T direction and E1 as its Borel derection.(2) there exists a meromorphic function f(z) of infinite lower order, which takes the E1 ∪ E2 as its Borel direction and E1 as its T direction.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第12期27-33,共7页 Journal of Southwest University(Natural Science Edition)
关键词 无穷级亚纯函数 T方向 BOREL方向 Meromorphic function of infinite order T direction Borel direction
  • 相关文献

参考文献3

二级参考文献3

  • 1Zheng J. H.,Transcendental meromorphic functions with radiant distributed values, Scientia Sinica, Series A 2003, 33(6): 537-550 (in Chinese).
  • 2Yang L., Value distribution and its new research, Beijing: Scientific Press, 1982 (in Chinese).
  • 3Tsuji M., Potential theory in modern function theory, Tokyo: Maruzen Co. Ltd., 1959.

共引文献9

同被引文献53

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部