期刊文献+

基于样本分布相似度的期望分布鉴别分析

Expected Distribution Discriminant Analysis Based on Similarity of Sample Distribution
原文传递
导出
摘要 主分量分析(PCA)和线性鉴别分析(LDA)是模式识别领域使用广泛的两种特征抽取方法.本文针对两种方法的不足之处,并从样本分布相似度出发提出一种期望分布鉴别分析(EDDA)方法,抽取到的鉴别特征的总体分布和设定的期望分布最为相近.即通过 EDDA 得到的投影向量可以抽取出最接近理想分布的鉴别特征.EDDA 在投影向量的求解问题上不存在小样本问题,抽取的鉴别特征维数小,并且整体识别性能得到增强.在 ORL、Yale 人脸库上的实验结果证明本文方法在人脸识别精度上优于 PCA 和 LDA 方法. Principal component analysis (PCA) and linear discriminant analysis (LDA) are two kinds of popular feature extraction methods for pattern recognition. A new method, expected distribution discriminant analysis (EDDA), is proposed based on the similarity of sample distribution after some disadvantages of PCA and LDA are indicated. The distribution of extracted features is mostly close to the expected distribution such as idealized distribution by using EDDA. Based on EDDA, the small sample size problem (SSSP) does not occur any more. The dimension of discrimination feature is very low and the recognition performance is enhanced. Some experimental results on ORL and Yale face database demonstrate that the proposed method has higher recognition rate than PCA and LDA.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2007年第6期751-756,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60632050 60472060 60473039)
关键词 期望分布鉴别分析(EDDA) 线性鉴别分析(LDA) 主分量分析(PCA) 特征抽取 Expected Distribution Discriminant Analysis (EDDA), Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA), Feature Extraction
  • 相关文献

参考文献9

  • 1Zhao W, Chelllappa R, Phillips P J, etal. Face Recognition: A Literature Survey. Technical Report, CAR- TR- 948, College Park, USA: University of Maryland. Center for Automation Research, 2000.
  • 2Kirby M, Sirovich L. Application of the KL Procedure for the Characterization of Human Faces. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12(1): 103-108.
  • 3Turk M, Pentland A. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 1991, 3(1) : 71-86.
  • 4Belhumeur P N, Hespanha J P, Kriengman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Special Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 5Swets D L, Weng J. Using Discriminant Eigenfeatures for Image Retrieval. IEEE Trans on Pattern Analysis and Machine Intelligence, 1996, 18(8) : 831-836.
  • 6Chen LF, Liao H Y M, Han C C, etal. A New LDA-Based Face Recognition System Which Can Solve the Small Sample Size Problem. Pattern Recognition, 2000, 33(10) : 1713-1726.
  • 7Huang Rui, Liu Qingshan, Lu Hanging, et al. Solving the Small Sample Size Problem of LDA // Proc of the International Conference on Pattern Recognition. Quebec, Canada, 2002. 29- 32.
  • 8Yang Jian, Yang Jingyu. Why Can LDA be Performed in PCA Transformed Space? Pattern Recognition, 2003, 36 (2): 563- 566.
  • 9Jin Zhong, Yang Jingyu, Hu Zhongshan, etal. Face Recognition Based on Uncorrelated Discriminant Transformation. Pattern Recognition, 2001, 34(7): 1405-1416.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部