期刊文献+

一类二阶非线性泛函微分方程的振动性

Oscillation for a Class of Nonlinear Second Order Functional Differential Equations
原文传递
导出
摘要 讨论了一类二阶非线性泛函微分方程的振动性,得到了该类方程所有解振动的新的充分条件,改进并推广了已有的结果. Oscillation of a class of second-order nonlinear functional differential equation is considered. A new sufficient condition for oscillation of all solutions of the equation was obtained which extended and improves some existing results.
作者 柴益琴
出处 《数学的实践与认识》 CSCD 北大核心 2007年第24期170-173,共4页 Mathematics in Practice and Theory
关键词 二阶泛函微分方程 非线性 振动性 second order functional differential oscillation nonlinear
  • 相关文献

参考文献6

  • 1Elshel M M A, SALLAM R. Oscillation criteria for second order functional differential equations[J]. Appl Math Comput,2000,115 (1):113--121.
  • 2Rogovchenko Y V. Oscillation criteria for certain nonlinear differential equations[J]. J Math Anal Appl, 1999, 229(2) :399--416.
  • 3Li H J. Oscillation criteria for second nor-linear differential equations with functional arguments[J]. J Math Anal Appl,1995,194(1):217--234.
  • 4王其如.二阶非线性微分方程的振动准则[J].数学学报(中文版),2001,44(2):371-376. 被引量:45
  • 5柴益琴.二阶非线性微分方程解的振动性与渐近性[J].太原理工大学学报,2005,36(2):232-234. 被引量:5
  • 6Erbe L. Oscillation criteria for second order nonlinear delay equations[J]. Canad Math Bull,1973,16(1):49--56.

二级参考文献10

  • 1[1]Rogovchenko Y. V., Oscillation Criteria for Certain Nonlinear Differential Equations [J], J. Math. Anal.Appl., 1999, 229(2): 399-416.
  • 2[2]Hameclani G. G., Krenz G. S., Oscillation Criteria for Certain Second Order Differential Equations [J], J.Math. Anal. Appl., 1990, 149(1): 271-276.
  • 3[3]Grace S. R., Lalli B. S., An Oscillation Criterion for Certain Second Order Strongly Sublinear Differential Equations [J], J. Math. Anal. Appl., 1987, 123(2): 584-588.
  • 4[4]Philos Ch G., Oscillation Theorems for Linear Differential Equations of Second Order [J], Arch. Math.(Basel), 1989, 53(5): 482-492.
  • 5[5]Erbe L., Oscillation Criteria for Second Order Nonlinear Delay Equations [J], Canad Math. Bull., 1973,16(1): 49-56.
  • 6R Greaf, P W Spikes. On the oscillatory of second order non-linear differential equations[J]. Czechoslovak Math J, 1986 (36) :275-284.
  • 7燕居让.常微分方程振动理论[M].太原:山西教育出版社,1982..
  • 8Mingshu Peng,Weigao Ge A. Correction on the oscillatory behavior of solutions of certain second order nonlinear differential equations[J]. J Math Appl,1999(104):207-215.
  • 9P J Wond,R P Agauwal. Oscillatory behavior of solutions of certain second order nonlinear differential equations[J]. J MathAnal Appl, 1996(198) : 337-354.
  • 10Wang Tong Li. Oscillation of Certain Second-Order Nonlinear Differential Equations[J]. J Math Anal Appl, 1998(217) : 1-14.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部