摘要
考虑如下边界值问题:-Δ[p(n-1)Δy(n-1)]+q(n)y(n)=f(n,y(n)),n∈[1,N](1.1)y(0)=y(N),p(0)Δy(0)=p(N)Δy(N)(1.2)其中{y(n)}nN=+01是一个期望解.运用锥不动点定理,给出了一种二阶离散周期边值问题多重正解的新的存在性定理.
we consider the following periodic boundary value problem:-Δ[p(n-1)Δy(n-1)]+q(n)y(n)=f(n,y(n)),n∈[1,N](1.1) y(0)=y(N),p(0)Δy(0)=p(N)Δy(N)(1.2) where {y(n)}n=0^N+1 is a desired solution, we present a new existence theory for muitiple positive solutions to a kind of second-order discrete periodic boundary value problems by employing a fixed point theorem in cones.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第24期182-186,共5页
Mathematics in Practice and Theory
基金
国家自然科学基金项目(10571021)
关键词
周期边值问题
存在性
多重正解
锥不动点定理
Periodio boundary value problem
existence
muitiple positive solution
fixed point theorem in cone