期刊文献+

二阶离散周期边值问题的多重正解

Muitiple Positive Solutions to Second-order Discrete Periodic Boundary
原文传递
导出
摘要 考虑如下边界值问题:-Δ[p(n-1)Δy(n-1)]+q(n)y(n)=f(n,y(n)),n∈[1,N](1.1)y(0)=y(N),p(0)Δy(0)=p(N)Δy(N)(1.2)其中{y(n)}nN=+01是一个期望解.运用锥不动点定理,给出了一种二阶离散周期边值问题多重正解的新的存在性定理. we consider the following periodic boundary value problem:-Δ[p(n-1)Δy(n-1)]+q(n)y(n)=f(n,y(n)),n∈[1,N](1.1) y(0)=y(N),p(0)Δy(0)=p(N)Δy(N)(1.2) where {y(n)}n=0^N+1 is a desired solution, we present a new existence theory for muitiple positive solutions to a kind of second-order discrete periodic boundary value problems by employing a fixed point theorem in cones.
作者 王丽颖
出处 《数学的实践与认识》 CSCD 北大核心 2007年第24期182-186,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金项目(10571021)
关键词 周期边值问题 存在性 多重正解 锥不动点定理 Periodio boundary value problem existence muitiple positive solution fixed point theorem in cone
  • 相关文献

参考文献6

  • 1Merdivenci F. Guseinov G Sh. Positive periodic solutions for nonlinear difference equations with periodic coefficients[J]. J Math Anal Appl,1999,(232):166--182.
  • 2Merdivenci F. Green's matrices and positive solutions of a discrete boundary value problem[J]. Pan American Math J,1995, (5) :25--42.
  • 3Merdivenci F. Positive solutions for focal point problems for 2n-th order difference equation[J]. Pan American Math J,1995,(5):71--82.
  • 4Merdivenci F. Two positive solutions of a boundary value problem for difference equations[J]. J Difference Equations Appl, 1995, (1) : 262--270.
  • 5Zhang R Y. Wang Z C, Cheng Y, Wu J. Periodic solutions of a single species discrete population model with periodic harvest/stock it[J]. Computers and Math with Appl,2000, (39):77--90.
  • 6Jiang D Q, O'Regan D, Agarwal R P. Optimal existence theory for single and multiple positive periodic solutions to functional difference equations[J]. Appl Math Comput,2005, (161):441--462.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部