期刊文献+

一般6R机器人的高精度逆运动学优化算法 被引量:11

Optimized Inverse Kinematics Algorithm with High Accuracy for General 6R Robots
下载PDF
导出
摘要 为提高一般6R机器人逆运动学算法的精度和效率,提出一种基于符号运算和矩阵分解的优化算法。对6个基础逆运动学方程作变换,采用符号运算预处理得到14个逆运动学方程,避免大量浮点数计算累积误差。利用其中6个方程与关节变量3无关的特点,将目标矩阵从24阶降低到16阶,包含的关节变量从3个增加到4个。把一元16次方程求根问题转换为矩阵特征分解问题,并选取较高数量级的相关数据元素计算关节变量,进一步提高了算法精度。以一般6R机器人为例,求解结果表明,提出的算法能够得到具有任意期望精度的最多16组实数逆运动学解。 In order to improve the accuracy and efficiency of the inverse kinematics algorithm for general 6R robots, an optimized algorithm was proposed based on symbolic processing and matrix decomposition. The 6 basic inverse kinematics equations were transformed, and symbolic preprocessing was applied to gain 14 inverse kinematics equations without any accumulative errors caused by float point computations. By exploiting the characteristic that 6 equations among them were independent on joint variable 3, the order of the target matrix was reduced from 24 to 16, as while as the number of the included joint variables was increased from 3 to 4. The problem of solving a polynomial of degree 16 was optimized to decomposing a matrix of order 16, and elements with the higher magnitude were selected for calculating the joint variables, so the accuracy was enhanced in a further step. Experiments on general 6R robots show that, the proposed inverse kinematics algorithm can seek 16 real solutions at most with any required accuracy.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2007年第11期118-122,共5页 Transactions of the Chinese Society for Agricultural Machinery
关键词 6R机器人 逆运动学 优化 符号运算 矩阵分解 6R robot, Inverse kinematics, Optimization, Symbolic processing, Matrixdecomposition
  • 相关文献

参考文献6

  • 1Tsai L W,Morgan A P.Solving the kinematics of the most general six and five degree of freedom manipulators by continuation methods[J].Transactions of the ASME,Journal of Mechanisms,Transmissions and Automation in Design,1985,107(2):189-200.
  • 2Primrose E J F.On the input-output equation of the general 7R mechanism[J].Mechanism and Machine Theory,1986,21(6):509-510.
  • 3Lee H Y,Liang C G.Displacement analysis of the general spatial 7-link 7R mechanism[J].Mechanism and Machine Theory,1988,23(3):219-226.
  • 4Raghavan M,Roth B.Kinematic analysis of the 6R manipulator of general geometry[C]//International Symposium on Robtics Research,1989:314-320.
  • 5Manocha D,Canny J F.Efficient inverse kinematics for general 6R manipulators[J].IEEE Transaction on Robotics and Automation,1994,5(10):648-657.
  • 6杭鲁滨,王彦,杨廷力.基于Groebner基法的一般串联6R机器人机构逆运动学分析[J].上海交通大学学报,2004,38(6):853-856. 被引量:16

二级参考文献9

  • 1Freudenstein F. Kinematics: past, present, and future [J]. Mechanism and Machine Theory, 1973,8 (2):151-161.
  • 2Duffy J, Crane C. A displacement analysis of the general 7-link 7R mechanism [J]. Mechanism and Machine Theory, 1980,15(2): 153- 169.
  • 3Tsai L W, Morgan A. Solving the kinematics of the most general six and five-degree-of-freedom manipulators by continuation methods [J]. ASME J Mech Transm Autom Design, 1985,107 (2): 189- 200.
  • 4Primrose E J F. On the input-output equation of the general 7R mechanism[J]. Mechanisms and Machine Theory, 1986,21 (5): 509- 510.
  • 5Lee H Y, Liang C G. Displacement analysis of the general spatial 7-link 7R mechanism [J]. Mechanism and Machine Theory, 1998,23 (3): 219- 226.
  • 6Lee H Y, Reinholtz C F. Inverse kinematics of serialchain manipulators[J]. ASME Journal of Mechanical Design, 1996,118(3): 396- 404.
  • 7Raghavan M, Roth B. Inverse kinematics of the general 6R manipulator and related linkages[J]. ASME Journal of Mechanical Design, 1993, 115 (3): 502 -508.
  • 8Kohli D, Osvatic M. Inverse kinematics of general 6R and 5R, P serial manipulators[J]. ASME Journal of Mechanical Design, 1993,115 (4): 922 - 931.
  • 9Mishra B. Algorithmic algebra [M]. New York:Spring-Verlag Inc, 1993.71 - 130.

共引文献15

同被引文献72

引证文献11

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部