期刊文献+

有13阶自同构的二元自对偶编码[52,26,10] 被引量:1

On Binary Self-dual Codes [52,26,10] with an Automorphism with 13 Orders
下载PDF
导出
摘要 通过对二元自对偶编码进行分类,证明了有13阶自同构的二元自对偶编码[52,26,10]是不存在的. All binary self-dual codes [52,26, 10] are classified to demonstrate that binary self-dual codes [52,26,10] with an automorphism of order 13 does not exist.
作者 王荣
出处 《重庆工学院学报》 2007年第23期89-93,共5页 Journal of Chongqing Institute of Technology
关键词 自对偶编码 自同构群 生成矩阵 线性空间 self-dual codes automorphism group generated matrices linear space
  • 相关文献

参考文献5

  • 1Conway J H, Asloane N J. A new upper bound on the minimal distance of self-dual codes[J]. IEEE Trans. Inform Theory, 1990, 36:1319 - 1333.
  • 2Huffman W. The [52,26,10] binary self-dual codes with an automorphism of order 7[M].[S.l.]:Academic Press,2001:341- 349.
  • 3Dontchcva R, Harada M. Extremal doubly even [80,40,16] with an automorphism of order 19[M]. [S. l.] : Elsevier Science (USA), 2003:157- 167.
  • 4Huffman W C. Automorphisms of codes with application extremal doubly-even codes of length 48[J]. IEEE Tram. Inform Theory, 1982,27/28:511 - 517.
  • 5Macwilliams F J, Sloane N J A. The Theory of Error-correcting codes[M]. [S.l.] :Amesterdam North-Holland, 1977.

同被引文献5

  • 1Huffman W C.Automorphisms of codes with application extremal doubly-even codes of length 48[].IEEE Transactions on Information Theory.1982
  • 2Huffman W.The[52,26,10]binary self-dual codes with an automorphism of order 7[]..2001
  • 3MacWilliams FJ,Sloane NJA.The Theory of Error-Correcting Codes[]..1977
  • 4Pless V.A classification of self-orthogonal codes over GF(2)[].Discrete Mathematics.1972
  • 5Dontchcva R,Harada M.Extremal doubly-even[80,40, 16]with an automorphism of order 19[].Finite Fields and Their Applications.2003

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部