期刊文献+

Positive Solutions of p-Laplacian Functional Difference Equations 被引量:1

Positive Solutions of p-Laplacian Functional Difference Equations
下载PDF
导出
摘要 In this paper, the author studies the boundary value problems for a p-Laplacian functional difference equation. By using a fixed point theorem in cones, sufficient conditions are established for the existence of the positive solutions.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第4期475-481,共7页 数学季刊(英文版)
基金 Supported by the NNSF of China(10571064) Supported by the NSF of Guangdong Province(O11471)
关键词 p-Laplacian operator functional difference equations positive solution CONE 拉普拉斯算子 泛函微分方程 正解 锥体
  • 相关文献

参考文献11

  • 1AGARWAL R P, HENDERSON J. Positive solutions and nonlinear eigenvalue problems for third-order difference equations[J]. Comput Math Appl, 1998, 36(11-12): 347-355.
  • 2LIU Yu-ji, GE Wei-gao. Twin positive solutions of boundary value problems for finite difference equations with p-Laplacian operator[J]. J Math Anal Appl 2003, 278(2): 551-561.
  • 3CABADA A. Extremal solutions for the difference Ф-Laplacian problem with nonlinear functional boundary conditions[J]. Comput Math Appl, 2001, 42: 593-601.
  • 4HENDERSON J. Positive solutions for nonlinear difference equations[J]. Nonlinear Stud, 1997, 4(1): 29-36.
  • 5ELOE P W, RAFFOUL Y. Positive solutions of nonlinear functional difference equations[J]. Comput Math Appl, 2001, 42: 639-646.
  • 6WENG Pei-xuan, GUO Zhi-hao. Existence of positive solutions for BVP of nonlinear functional difference equation with p-Laplacian operator[J]. Acta Math Sinica(Chinese Series), 2006, 49(1): 187-194.
  • 7WU Wei, ZHANG Bing-gen. Existence of multiple positive solutions of p-Laplacian boundary value problems[J]. Bulletin of the Marathwada Mathematical Society, 2004, 5(2): 71-76.
  • 8WONG F H. Existence of positive solutions for m-Laplacian Bvps[J]. Appl Math Letters, 1999, 12, 11-17.
  • 9MANASEVICH R, ZANOLIN F. Time-mapping and multiplicity of solutions for the one-dimensional p- Laplacians[J]. Nonlinear Analysis, 1993, 21(4): 269-291.
  • 10贺小明,葛渭高.一维p-Laplacian方程正解的存在性[J].数学学报(中文版),2003,46(4):805-810. 被引量:13

二级参考文献12

  • 1Jiang D. Q., Upper and lower solutions method and a superlinear singular boundary value problem for the one-dimensional p-Laplacian, Computers Math. Applic., 2001, 42: 927-940.
  • 2Wang J. Y., The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc.,1997, 125: 2275-2283.
  • 3Yao Q. L., Lii H. S., Positive solutions of one-dimensional singular p-Laplacian equations, Acta Mathematica Sinica, 1998, 41(6): 1255--1264 (in Chinese).
  • 4Ben-Naoum A. K, De Coster G., On the p-Laplacian seperated boundary value problem, Differential and Integral Equation, 1997, 10(6): 1093-1112.
  • 5Guo D. J., Lakshmikantham V., Nonlinear problems in abstract cones, Acdemic Press, San Diego, CA, 1988.
  • 6Lian W. C., Wong F. H., Existence of positive solutions for high-order generalized p-Laplacian-BVPs. Appl.Math. Lett., 2000, 13: 35-43.
  • 7Chyan C. J., Henderson J., Multiple solutions for 2m^th-order Sturm-Liouville boundary value problems,Computers. Math. Applic., 2000, 40: 231-237.
  • 8Erbe L. H., Wang H. Y., On the existence of positive solutions of ordinary differential equations, Proc. Amer.Math. Soc., 1994, 120(3): 743-748.
  • 9Cheng L. W., Wong F. H., Yen C. C., On the existence of positive solutions of nonlinear second order differential equations, Proc. Amer. Math. Soc., 1996, 124(4): 1117-1126.
  • 10Kong L. B., Wang Ji Y., Multiple positive solutions for the one-dimensional p-Laplacian, Nonlinear Anal.,2000, 42: 1327-1333.

共引文献12

同被引文献29

  • 1DIENING L, NEKVINDA A. Open Problems in Variable Exponent Lebesgue and Sobolev Spaces[M]. Milovy (Czech Republic): Masaryk University Press, 2004: 38-58.
  • 2JIKOV V V, KOZLOV S M, OLEINIK 0 A. Homogenization of Differential Operators and Integral Func?tionals[M]. Berlin: Springer-Verlag, 1994.
  • 3MANAsEVIC H R, MAWHIN J. Periodic solutions for nonlinear systems with p-Laplacian-like operators[J]. J Differential Equations, 1998, 145(2): 367-393.
  • 4MARCELLINI P. Regularity and existence of solutions of elliptic equations with (p, q )-growth conditions[J]. J Differential Equations, 1991, 90: 1-30.
  • 5FAN Xian-ling, HAN Xiao-you. Existence and multiplicity of solutions for p(x)-Laplacian equations in RN[J]. Nonlinear Anal, 2004,59: 173-188.
  • 6FAN Xian-ling, ZHANG Qi-hu. Existence of solutions for p(x)-Laplacian Dirichlet problem[J]. Nonlinear Anal, 2003, 52: 1843-1852.
  • 7FAN Xian-ling, ZHAO Yuan-zhang, ZHAO Dun. Compact embeddings theorems with symmetry of Strauss?Lions type for the space wm,p(X) (fl)[J]. J Math Anal Appl, 2001, 255: 333-348.
  • 8WANG Xian-jun, YUAN Rong. Existence of periodic solutions for p(t)-Laplacian systems[J]. Nonlinear Anal, 2009, 70: 866-880.
  • 9ZHANG Liang, TANG Xian-hua, CHEN Jing. Infinitely many periodic solutions for some second-order differential systems with p(t)-Laplacian[J]. Boundary Value Problems, 2011, 2011: 33.
  • 10DAI Guo-wei. Three solutions for a Neumann-type differential inclusion problem involving the p(x)?Laplacian[J]. Nonlinear Anal, 2009, 70: 3755-3760.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部