Positive Solutions of p-Laplacian Functional Difference Equations
被引量:1
Positive Solutions of p-Laplacian Functional Difference Equations
摘要
In this paper, the author studies the boundary value problems for a p-Laplacian functional difference equation. By using a fixed point theorem in cones, sufficient conditions are established for the existence of the positive solutions.
基金
Supported by the NNSF of China(10571064)
Supported by the NSF of Guangdong Province(O11471)
参考文献11
-
1AGARWAL R P, HENDERSON J. Positive solutions and nonlinear eigenvalue problems for third-order difference equations[J]. Comput Math Appl, 1998, 36(11-12): 347-355.
-
2LIU Yu-ji, GE Wei-gao. Twin positive solutions of boundary value problems for finite difference equations with p-Laplacian operator[J]. J Math Anal Appl 2003, 278(2): 551-561.
-
3CABADA A. Extremal solutions for the difference Ф-Laplacian problem with nonlinear functional boundary conditions[J]. Comput Math Appl, 2001, 42: 593-601.
-
4HENDERSON J. Positive solutions for nonlinear difference equations[J]. Nonlinear Stud, 1997, 4(1): 29-36.
-
5ELOE P W, RAFFOUL Y. Positive solutions of nonlinear functional difference equations[J]. Comput Math Appl, 2001, 42: 639-646.
-
6WENG Pei-xuan, GUO Zhi-hao. Existence of positive solutions for BVP of nonlinear functional difference equation with p-Laplacian operator[J]. Acta Math Sinica(Chinese Series), 2006, 49(1): 187-194.
-
7WU Wei, ZHANG Bing-gen. Existence of multiple positive solutions of p-Laplacian boundary value problems[J]. Bulletin of the Marathwada Mathematical Society, 2004, 5(2): 71-76.
-
8WONG F H. Existence of positive solutions for m-Laplacian Bvps[J]. Appl Math Letters, 1999, 12, 11-17.
-
9MANASEVICH R, ZANOLIN F. Time-mapping and multiplicity of solutions for the one-dimensional p- Laplacians[J]. Nonlinear Analysis, 1993, 21(4): 269-291.
-
10贺小明,葛渭高.一维p-Laplacian方程正解的存在性[J].数学学报(中文版),2003,46(4):805-810. 被引量:13
二级参考文献12
-
1Jiang D. Q., Upper and lower solutions method and a superlinear singular boundary value problem for the one-dimensional p-Laplacian, Computers Math. Applic., 2001, 42: 927-940.
-
2Wang J. Y., The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc.,1997, 125: 2275-2283.
-
3Yao Q. L., Lii H. S., Positive solutions of one-dimensional singular p-Laplacian equations, Acta Mathematica Sinica, 1998, 41(6): 1255--1264 (in Chinese).
-
4Ben-Naoum A. K, De Coster G., On the p-Laplacian seperated boundary value problem, Differential and Integral Equation, 1997, 10(6): 1093-1112.
-
5Guo D. J., Lakshmikantham V., Nonlinear problems in abstract cones, Acdemic Press, San Diego, CA, 1988.
-
6Lian W. C., Wong F. H., Existence of positive solutions for high-order generalized p-Laplacian-BVPs. Appl.Math. Lett., 2000, 13: 35-43.
-
7Chyan C. J., Henderson J., Multiple solutions for 2m^th-order Sturm-Liouville boundary value problems,Computers. Math. Applic., 2000, 40: 231-237.
-
8Erbe L. H., Wang H. Y., On the existence of positive solutions of ordinary differential equations, Proc. Amer.Math. Soc., 1994, 120(3): 743-748.
-
9Cheng L. W., Wong F. H., Yen C. C., On the existence of positive solutions of nonlinear second order differential equations, Proc. Amer. Math. Soc., 1996, 124(4): 1117-1126.
-
10Kong L. B., Wang Ji Y., Multiple positive solutions for the one-dimensional p-Laplacian, Nonlinear Anal.,2000, 42: 1327-1333.
共引文献12
-
1杜增吉,葛渭高.二阶两点边值问题的多解存在性[J].Journal of Mathematical Research and Exposition,2006,26(2):406-412. 被引量:6
-
2徐夫义,苏华,王健.p-Laplacian非线性奇异边值问题正解的存在性[J].山东大学学报(理学版),2006,41(5):100-103. 被引量:2
-
3李洪梅,赵赠勤.具有无限多个奇性点的一维p-Laplacian方程的正解[J].应用泛函分析学报,2007,9(4):338-342.
-
4杨雯抒.具m-Laplacian算子型椭圆边值问题的多重径向对称正解[J].贵州师范大学学报(自然科学版),2008,26(4):64-68. 被引量:1
-
5李洪梅.一维p-laplacian方程组的正解存在性[J].怀化学院学报,2010,29(2):17-22.
-
6武跃祥,霍艳梅,张玉珠.一类非线性微分方程解的存在性[J].数学的实践与认识,2010,40(16):232-236.
-
7栾世霞,孙钦福.一类二阶半正特征值问题的正解[J].应用数学学报,2011,34(1):10-16. 被引量:1
-
8范进军,张雪玲,刘衍胜.时间尺度上带p-Laplace算子的m点边值问题的正解[J].济南大学学报(自然科学版),2012,26(4):415-418. 被引量:1
-
9范进军,张雪玲,刘衍胜.时间测度上带p-Laplace算子的m点边值问题正解的存在性[J].山东大学学报(理学版),2012,47(6):16-19. 被引量:3
-
10李盟,杨志林.四阶p-Laplace方程组边值问题的正解[J].青岛理工大学学报,2017,38(5):107-114.
同被引文献29
-
1DIENING L, NEKVINDA A. Open Problems in Variable Exponent Lebesgue and Sobolev Spaces[M]. Milovy (Czech Republic): Masaryk University Press, 2004: 38-58.
-
2JIKOV V V, KOZLOV S M, OLEINIK 0 A. Homogenization of Differential Operators and Integral Func?tionals[M]. Berlin: Springer-Verlag, 1994.
-
3MANAsEVIC H R, MAWHIN J. Periodic solutions for nonlinear systems with p-Laplacian-like operators[J]. J Differential Equations, 1998, 145(2): 367-393.
-
4MARCELLINI P. Regularity and existence of solutions of elliptic equations with (p, q )-growth conditions[J]. J Differential Equations, 1991, 90: 1-30.
-
5FAN Xian-ling, HAN Xiao-you. Existence and multiplicity of solutions for p(x)-Laplacian equations in RN[J]. Nonlinear Anal, 2004,59: 173-188.
-
6FAN Xian-ling, ZHANG Qi-hu. Existence of solutions for p(x)-Laplacian Dirichlet problem[J]. Nonlinear Anal, 2003, 52: 1843-1852.
-
7FAN Xian-ling, ZHAO Yuan-zhang, ZHAO Dun. Compact embeddings theorems with symmetry of Strauss?Lions type for the space wm,p(X) (fl)[J]. J Math Anal Appl, 2001, 255: 333-348.
-
8WANG Xian-jun, YUAN Rong. Existence of periodic solutions for p(t)-Laplacian systems[J]. Nonlinear Anal, 2009, 70: 866-880.
-
9ZHANG Liang, TANG Xian-hua, CHEN Jing. Infinitely many periodic solutions for some second-order differential systems with p(t)-Laplacian[J]. Boundary Value Problems, 2011, 2011: 33.
-
10DAI Guo-wei. Three solutions for a Neumann-type differential inclusion problem involving the p(x)?Laplacian[J]. Nonlinear Anal, 2009, 70: 3755-3760.
-
1吴中华.Existence of asymptotically almost periodic solutions and stability properties for functional difference equations[J].Journal of Chongqing University,2012,11(2):97-102. 被引量:4
-
2Qin Maochang,Mei Fengxiang.POSITIVE PERIODIC SOLUTIONS OF NONLINEAR FUNCTIONAL DIFFERENCE EQUATION[J].Annals of Differential Equations,2006,22(4):546-550.
-
3Hai-ping Shi Xue-jun Zhong.Existence of Periodic and Subharmonic Solutions for Second Order Functional Difference Equations[J].Acta Mathematicae Applicatae Sinica,2010,26(2):229-240.
-
4Wang Yiqin Chen Xiaoxing (College of Math, and Computer Science, Fuzhou University, Fuzhou 350002).OPTIMAL EXISTENCE THEORY FOR SINGLE AND MULTIPLE POSITIVE PERIODIC SOLUTIONS TO FUNCTIONAL DIFFERENCE EQUATIONS WITH FEEDBACK CONTROL[J].Annals of Differential Equations,2006,22(3):378-383.
-
5DAI Bin-xiang ZOU Jie-zhong ZHANG Na.Positive periodic solutions of higher-dimensional nonlinear functional difference equations[J].Journal of Central South University of Technology,2005,12(z1):274-277.