A New Proof of Calabi-Yau's Theorem
A New Proof of Calabi-Yau's Theorem
摘要
We give a new proof of Calabi-Yau's theorem on the volume growth of Rie- mannian manifolds with non-negative Ricci curvature.
基金
Supported by NSFC(10271121)
参考文献3
-
1LI Peter. Lecture Notes on Geometric Analysis[M]. Korea: Research Institute of Mathematics, Global Analysis Research Center, Seoul National University, 1993.
-
2YAU Shing-tung, SCHOEN Richard. Lectures on Differential Geometry[M]. Cambridge, MA: International Press Publications, 1994.
-
3WU Hong-xi. An elementary method in the study of nonnegative curvature[J]. Acta Math, 1979, 142: 57-78.
-
1武三星,张静.On the Elliptic Equation △u+K(x)e^(2u)=0 with K(x) Positive Somewhere[J].Chinese Quarterly Journal of Mathematics,2008,23(1):89-95.
-
2Haim Brezis,Li Yanyan.SOME NONLINEAR ELLIPTIC EQUATIONS HAVE ONLY CONSTANT SOLUTIONS[J].Journal of Partial Differential Equations,2006,19(3):208-217. 被引量:1
-
3詹华税,许文彬.具非负Ricci曲率和严格(1+δ)阶体积增长的三维流形[J].数学杂志,2009,29(1):103-108. 被引量:1
-
4王林峰.变指数Laplace算子的Liouville型定理[J].华东师范大学学报(自然科学版),2009(1):84-93.
-
5WANG MENG Department of Mathematics, Zhejiang University, Hangzhou 310027, China,School of Mathematical Sciences, Pudan University, Shanghai 200433, China..SOBOLEV INEQUALITY ON RIEMANNIAN MANIFOLDS[J].Chinese Annals of Mathematics,Series B,2005,26(4):651-658.
-
6杨飞,张良迪.关于完备收缩的Ricci-harmonic孤子的研究(英文)[J].数学杂志,2016,36(3):494-500.
-
7吴炳烨.空间形式中子流形的象半径与体积增长[J].数学年刊(A辑),2002,23(4):447-450. 被引量:1
-
8詹华税.具非负Ricci曲率完备黎曼流形的体积增长[J].集美大学学报(自然科学版),1999,4(2):6-12. 被引量:1
-
9朱鹏.四维双曲空间中的超曲面[J].扬州大学学报(自然科学版),2015,18(4):44-46. 被引量:2
-
10许文彬.具非负Ricci曲率的完备非紧黎曼流形[J].厦门大学学报(自然科学版),2007,46(5):731-733.