期刊文献+

On the Continuity of Julia Sets and Hausdorff Dimension of N CP and Parabolic Maps 被引量:1

On the Continuity of Julia Sets and Hausdorff Dimension of N CP and Parabolic Maps
下载PDF
导出
摘要 Denote by HD(J(f)) the Hausdorff dimension of the Julia set J(f) of a rational function f. Our first result asserts that if f is an NCP map, and fn → f horocyclically,preserving sub-critical relations, then fn is an NCP map for all n ≥≥ 0 and J(fn) →J(f) in the Hausdorff topology. We also prove that if f is a parabolic map and fn is an NCP map for all n ≥≥ 0 such that fn→4 f horocyclically, then J(fn) → J(f) in the Hausdorff topology, and HD(J(fn)) →4 HD(J(f)).
作者 ZHUANG Wei
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第4期592-596,共5页 数学季刊(英文版)
关键词 Julia set Hausdorff dimension Markov partition conformal measure Julia集 Hausdorff维 Markov划分 共形测度
  • 相关文献

参考文献6

  • 1URBANSKI M. Measures and Dimensions in Conformal Dynamics[J]. Bull Amer Math Soc, 2003, 40: 281- 321.
  • 2CURTIS T McMullen. Huasdorff dimension and conformal dynamics II: geometrically finite rational maps[J]. Comment Math Helv, 2000, 75: 535-593.
  • 3RIVERA-Letelier J. On the continuity of Hausdorff dimension of Julai sets and similarity between the Mandelbrot set and Julia sets[J]. Fund Math, 2001, 170: 287-317.
  • 4URBANSKI M. Rational functions with no recurrent critical points[J]. Ergod Th and Dynam Sys, 1994, 14: 391-414.
  • 5DENKER M, URBANSKI M. On Hausdorif measures on Julia sets of subexpanding rational maps[J]. Israel J of Math, 1991, 76: 193-214.
  • 6ARONSON J, DENKER M, URBANSKI M. Ergodic theory of Markov fibred systems and parabolic rational maps[J]. Transaction American Math Society, 1993, 337: 495-548.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部