期刊文献+

Alpha稳定分布的参数表征及仿真 被引量:18

Parameterizations and Simulation of Alpha stable Distribution
下载PDF
导出
摘要 仿真服从标准参数系下任意参数的Alpha稳定分布(αS)随机变量是开展相关信号处理研究的基础。服从对称Alpha稳定分布(SαS)的随机变量较易生成,而产生服从αS分布随机变量较为困难,一个重要的因素是存在易于混淆的不同参数表征。本文在讨论Alpha稳定分布概念、性质的基础上,讨论了三种主要参数系,提出并证明了正确的产生服从αS分布随机变量的变换公式及仿真方法,并通过Monte-carlo仿真比较了三种参数系表征的αS分布的概率密度函数的差异。对Pearson海杂波的仿真表明了该方法的有效性,而Chambers方法存在分布位置的偏差。 Simulating random variable (r. v. ) subject to Alpha stable distribution with arbitrary parameters in the standard parameterization (αS) is the foundation to perform some research on signal processing. There are different parameterizations for Alpha stable distribution that are easy to cause confusion. For this reason, the r. v. subject to aS is more difficult to generate than that with symmetric Alpha stable distribution (SαS). Based on the concepts and properties of the Alpha stable distribution, the three parameterizations are discussed. Furthermore, we propose and proof the equation to accurately generate the r. v. subject to aS, as well as the simulation method. The PDF of parameterizations are compared by Monte-carlo simulation. Finally, the simulations for Pearson sea-clutter show that our method is valid and the method of Chambers has a certain error.
出处 《信号处理》 CSCD 北大核心 2007年第6期814-817,共4页 Journal of Signal Processing
基金 国家自然科学基金(No.60475024)
关键词 ALPHA稳定分布 参数体系 随机变量生成 Alpha stable distribution Parameterizations Random variable generator
  • 相关文献

参考文献8

  • 1V. M. Zolotarev. One-dimewsional Stable Distributions [M], Amer. Math. Soc. Tkansl. of Math. Monographs, Vol. 65. Amer. Math. Soc. , Providence, R. I. ( Transl. of the original 1983 Russian).
  • 2G. Samorodnitsky and M. Taqqu. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance [ M ]. Chapman and Hall, NewYork, London, 1994.
  • 3M. Shao, C. L. Nikias. Signal processing with fractional lower order moments:stable processes and their applications[J]. Proceedings of the IEEE, Volume 81, Issue 7, July 1993 ,pp:986-1010.
  • 4P. Tsakalides, F. Trinic, C. L. Nikias. Performance assessment of CFAR processors in Pearson-distributed clutter [ J ]. Aerospace and Electronic Systems, IEEE Transactions on, Volume : 36, Issue :4, Oct. 2000. pp: 1377-1386.
  • 5王首勇,刘俊凯,王永良.机载雷达多杂波分布类型的恒虚警检测方法[J].电子学报,2005,33(3):484-487. 被引量:11
  • 6J. M. Chambers,C. L. Mallows,and B. W. Stuck. A method for simulating stable random variables [ J ]. Journal of the American Statistical Association, Vol. 71, No. 354, June 1976, pp : 340-344.
  • 7J. P. Nolan. Parameterizations and modes of stable distributions[ J]. Statistics & Probability Letters Volume: 38, Issue: 2, June 1,1998, pp : 187-195.
  • 8Weron, Rafal. On the Chambers-Mallows-Stuck method for simulating skewed stable random variables. Statistics & Probability Letters Volume: 28, Issue: 2, June 15,1996, pp:165-171.

二级参考文献9

  • 1何友,RohlingH.有序统计恒虚警(OS-CFAR)检测器在韦布尔干扰背景中的性能[J].电子学报,1995,23(1):79-84. 被引量:14
  • 2Roling H.Radar CFAR thresholding in clutter and multiple target situations[J].IEEE Trans.,1983,AES-19(4):608-612.
  • 3Goldstein G B.False alarm regulation in log-normal clutter and weibull clutter[J].IEEE Trans.,1973,AES-9(1):84-92.
  • 4Guida M,Longo M,Lops M.Biparametric linear estimation for CFAR against weibull clutter[J].IEEE Trans.,1992,AES-28(1):138-152.
  • 5Guida M,Longo M,Lops M.Biparametric CFAR procedures for lognormal clutter[J].IEEE Trans.,1993,AES-29(3):798-809.
  • 6M费史著 王福保 译.概率论与数理统计[M].上海:上海科学技术出版社,1962.385-398.
  • 7Jakubiak A,Arabas J,Grabczak K,et al.Radar clutter classification using Kohonen neural network[A].Proc.of international radar conference[C].1997.185-188.
  • 8Jouny I.Classification of clutter using the bispectrum[A].IEEE Signal Processing Workshop[C],1993.245-249.
  • 9盛骤 谢式千.概率论与数理统计(第二版)[M].北京:高等教育出版社,1989.222-225.

共引文献10

同被引文献120

引证文献18

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部