期刊文献+

混合高斯自回归模型参数估计方法之ML-DC

ML-DC Algorithm of Parameters Estimation for Gaussian Mixture Autoregressive Model
下载PDF
导出
摘要 混合高斯自回归模型可以对有色非高斯数据的概率密度和功率谱密度进行有效的拟合.而ML-DC算法则可解决这一模型的参数估计问题。描述了混合高斯自回归模型及其参数估计问题之后,分别导出了功率谱密度参数的最大似然估计和概率密度参数估计的动态簇算法,并由此组成了参数耦合估计的ML-DC算法。最后结合一组仿真实例对其估计性能进行了详细探讨,指出并解释了算法的适用范围。 With Gaussian mixture autoregressive model,the probability density and power spectrum density of non-Gaussian colored processes can be fit. Its parameters can be estimated through the ML-DC algorithm. After descriptions of the model and the estimation problem, maximum likelihood estimation of autoregressive parameters and the dynamic clutter algorithm for Gaussian mixture parameters are dedueed, respectively. Based on them, ML-DC algorithm for coupling estimation between power spectrum density parameters and probability density parameters is built up. Finally, a numerical instance in simulation is illustrated where performance of estimation is discussed in detail.
出处 《信号处理》 CSCD 北大核心 2007年第6期864-868,共5页 Journal of Signal Processing
基金 973基金项目 编号为5132102ZZT32.
关键词 混合高斯自回归模型 最大似然估计 动态簇算法 Gaussian mixture autoregressive model Maximum likelihood estimation Dynamic clutter algorithm
  • 相关文献

参考文献4

  • 1Debasis Sengupta, Steven Kay. Efficient estimation of parameters for non-Gaussian autoregressive processes [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989,37 (6) :785-794.
  • 2Shawn M Verbout,James M Ooi,Jeffrey T Ludwig,Alan V Oppenheim. Parameter estimation for autoregressive Gaussian-mixture processes:the EMAX algorithm[J]. IEEE Transactions on Signal Processing,1998:46(10),2744-2756.
  • 3Debasis Sengupta, Steven Kay. Parameter estimation and GLRT detection in colored non-Gaussian autoregressive processes [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990,38(10) : 1661-1676.
  • 4Yunxin Zhao, Xinhua Zhuang, Shen-Jen Ting. Gaussian mixture density modehng of non-Gaussian source for autoregressive process[J]. IEEE Transactions on Signal Processing, 1995.43 (4), 894-903.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部