期刊文献+

波流共存场中多向随机波浪传播变形数学模型 被引量:9

Numerical modeling of multi-directional random wave transformation in wave-current coexisting water areas
下载PDF
导出
摘要 基于波作用量守恒方程建立了波流共存场中多向随机波浪传播变形数学模型,模型中考虑了波浪绕射的影响和水流引起的波浪弥散多普勒效应,应用包含水流和地形影响的激破波模式计算波浪破碎的能量耗散,采用一阶上迎风有限差分格式离散控制方程。分别计算了有无近岸流情况下单向和多向随机波浪的波高分布,考虑水流影响的数值计算结果与物理模型实验数据吻合良好,比较分析表明,所建立的数学模型能够复演由于离岸流引起的波高增大,可用于波流共存场多向随机波浪传播变形的模拟和预报。 Based upon the wave action balance equation, a numerical predicting model is developed for multi-directional random wave transformation in the wave-current coexisting field, in which the diffraction effect and the Doppler shift of dispersion relation are taken into account. current and depth limited wave A bore based formulation is used to parameterize the energy dissipation associated with coupled breaking. The governing equation is discretized by a forward-marching first order upwind finite difference method. The wave height distribution of uni-and multi-directional incident random waves are calculated with and without considering the nearshore currents effect. Results show that the predictions considering the current effect produce a preferable fit to the experimental data and perform well in simulating the wave height accretion due to rip currents. The mutual model-data comparisons reveal that the present model is applicable for the random waves propagating in wave-current coexisting water areas.
出处 《水科学进展》 EI CAS CSCD 北大核心 2008年第1期78-83,共6页 Advances in Water Science
基金 国家自然科学基金资助项目(50509007) 教育部新世纪优秀人才支持计划(NCET-07-0255) 河海大学科技创新基金联合资助项目(2013406092)~~
关键词 波流共存场 波作用量守恒方程 多向随机波浪 数学模型 波浪传播变形 wave-current coexisting areas wave action balance equation multi-directional random wave numerical model wave transformation
  • 相关文献

参考文献14

  • 1Christoffersen J B, Jonsson I G. A note on wave action conservation in a dissipative current wave motion[J]. Applied Ocean Research, 1980, (2) : 179 - 182.
  • 2Herbich J B. Handbook of Coastal and Ocean Engineering[M]. Houston: Gulf Publishing Co, USA, 1990. 703 - 726.
  • 3Liu P L F. Wave-current interactions on a slowly varying topography[ J], J Geophy Res, 1983, 88(C7): 4 421 -4 426.
  • 4Chen W, Panchang V, Demirbilek Z. On the modeling of wave-current interaction using the elliptic mild-slope wave equation[ J]. Ocean Engineering, 2005, 32(17 - 18) :2 135 - 2 146.
  • 5Yoon S B, Liu P L F. Interaction of currents and weakly nonlinear water wave in shallow water[J]. J Fluid Meeh, 1989, 105:397 - 419.
  • 6Chen Q, Madsen P A, Schaffer H A, et al. Wave-current interaction based on an enhanced Boussinesq approach[J]. Coastal Engineering, 1998, 33(1):11-39.
  • 7Booij N, Ris R C, Holthuijsen L H, A third generation wave model for coastal regions. 1. Model description and validation[J] .J Geophys Res, 1999, 104(c4) :7649 - 7666.
  • 8Mase H, Amamori H, Takayama T. Wave prediction model in wave-current coexisting field[CD-ROM]. Proc 12th Canadian Coastal Conference [C]. Dartmouth:CSCE, 2005.
  • 9Ris R C, Holthuijsen L H, Booij N. A third generation wave model for coastal regions. 2 verification[J]. J Gcophys Res, 1999, 104(C4) : 7 667 - 7 681.
  • 10Chawla A, Kirby J T. Monochromatic and random wave breaking at blocking points[J]. J Geophys Res, 2002, 107(C7), doi:10.1029/2001JC001042.

同被引文献197

引证文献9

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部