摘要
利用离散增量结合协变判别函数,选取氨基酸组份和N端氨基酸二肽组份为信息参数,对蛋白质亚核定位进行预测.在序列相似性小于等于25%时,406个单定位亚核蛋白Jackknife检验总预测成功率为75.9%,相关系数CC为0.644,把多定位亚核蛋白作为独立测试集,92个多定位亚核蛋白总预测成功率为78.3%.在序列相似性小于等于65%时,504个单定位亚核蛋白Jackknife检验总预测成功率为75.6%,相关系数CC为0.643,92个多定位亚核蛋白总预测成功率为80.4%.与Lei等人利用Lei-SVM方法对该数据库预测结果相比,单定位亚核蛋白总预测成功率比Lei等人高9.1%,CC值比Lei等人高0.124,多定位亚核蛋白总预测成功率比Lei等人高15.2%.
Based on the increment of diversity and covariant discriminant function,the protein subnuclear location was predicted by using of the amino acid compositions and N-terminal dipeptide compositions. For 406 single localization nuclear proteins with ≤25 % sequence identity, the results of jackknife test show that the overall accuracy and correlation coefficient are 75.9% and 0. 644, respectively. And the overall accuracy is 78. 3% for an independent set of 92 multi-localization proteins. For 504 single localization proteins in jackknife test the overall predictive success rate and correlation coefficient are 75.6% and 0. 643,respectively. And the overall correct predicted rate is 80.4% for the independent set of 92 multi-localization proteins. Our result is 9. 1% higher than the result of Lei's SVM for 504 single localization proteins,and 15.2% higher than Lei's SVM for an independent set of 92 multi-localization proteins.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第1期56-60,共5页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家自然科学基金资助项目(30560039)
关键词
离散增量
协变判别函数
亚核蛋白
Jackknife检验
increment of diversity
covariant discriminant function
subnuclear localization
Jackknife test