期刊文献+

独立分量分析在输电塔防盗监测系统中的应用 被引量:4

Application of ICA on Transmission Tower Theftproof Monitoring System
下载PDF
导出
摘要 在电磁干扰下检测出因不良企图引起的铁塔振动信号,防止塔材被盗事件的发生,对保障电网安全运行有着重要意义。文中介绍了一种基于独立分量分析(ICA)的输电塔防盗监测系统。ICA方法能够在没有源信号和传输通道参数先验知识的情况下,按照统计独立的原则,通过选择判据和优化算法将信号分解成若干独立的源成分,适合于该系统中非平稳振动信号的提取。系统在硬件方面采取了相应的抗干扰措施,有效降低了电磁等干扰。采用负熵的FastICA方法和探查性投影追踪信号处理算法快速地对铁塔盗窃中产生的振动信号进行了较好的提取和分离,结合自适应阈值脉冲提取算法,有效地提取振动脉冲成分,降低了噪声干扰。实验结果表明该系统能够较好地检测出铁塔盗窃中产生的振动信号。 An anti-theft monitoring system for transmission tower based on Independent Component Analysis (ICA) is presented to examine the vibration signals hidden in the electromagnetic interference signal to prevent the high incidences of transmission tower from being stolen. It is of great importance to guarantee the security of power systems operation. The monitoring system using the ICA algorithm is to find underlying factors or components from multivariate statistical data with the help of the dimension reduction methods available to extract the non-stationary vibration signals. The anti interference measures are adopted in the hardware of the system so as to reduce the electromagnetic interference effectively. Moreover, the vibration signals are extracted and separated successfully by use of the Negentropy based FastICA method and the Exploratory Projection Pursuit (EPP) method. The vibration pulse is also extracted efficaciously by using the adaptive threshold pulse extraction method to suppress the interference signals to a certain extent. Tests results on the spot demonstrate the system is effective in checking the vibration signals.
出处 《电力系统自动化》 EI CSCD 北大核心 2008年第2期97-100,105,共5页 Automation of Electric Power Systems
关键词 输电塔 防盗监测系统 振动信号 独立分量分析 负熵 自适应阈值 transmission tower theftproof monitoring system vibration signal ICA negentropy adaptive threshold
  • 相关文献

参考文献11

  • 1安玲,江秀臣,朱宇,韩振东,陈亚珠.输电线路状态检修软件系统的面向对象设计与实现[J].电力系统自动化,2002,26(7):66-69. 被引量:13
  • 2HYVARINEN A, KARHUNEN J, OJA E. Independent component analysis. New York, NY, USA: John Wiley and Sons, 2001.
  • 3LEE T W, GIROLAMI M, TERRENCE J S. Independent component analysis using an extended information algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 1999, 11(2): 417-441.
  • 4胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107. 被引量:46
  • 5吴正国,唐劲松,章林柯,等译.自适应盲信号与图像处理.北京:电子工业出版社,2005.
  • 6HYVARINEN A,KARHUNEN J,OJA E.独立成份分析.周宗潭,董国华,徐昕,等译.北京:电子工业出版社,2007.
  • 7HYVARINEN A, OJA E. A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9(7) : 1483-1492.
  • 8HYVARINEN A. Fast and robust fixed-point algorithm for independent component analysis. IEEE Trans on Neural Network, 1999, 10(3): 626-634.
  • 9张毅刚,郁惟镛,范春菊,赵亚奎.尺度空间滤波在局部放电脉冲提取中的应用[J].电力系统自动化,2003,27(23):33-36. 被引量:6
  • 10邵震宇.神经网络在大型电机局放处理中的应用研究[D].上海:上海交通大学,2005、

二级参考文献41

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2鹿中梁.悬式瓷质绝缘子按串检测方法:硕士论文[M].上海:上海交通大学,2000..
  • 3Curtis Smith Michael Amundsen.数据库编程6.0[M].北京:清华大学出版社,1999..
  • 4[10]Mallat S, Wen Liang Hwang. Singularity Detection and Processing with Wavelets. IEEE Trans on Inform Theory,1992, 38(22): 617~643
  • 5[11]Xu Yansun, Weaver J B, Healy D M, et al. Wavelet Transform Domain Filters: A Spatially Selective Noise Filtration Technique. IEEE Trans on Image Processing, 1994,3(6): 747~757
  • 6Hyv(a)rinen A,Oja E.Independent Component Analysis:algorithms and applications[J].Neural networks.2000,13:411-430
  • 7Hyv(a)rinen A,Oja E.Independent Component Analysis:A Tutorial[EB/OL].http://www.cis.hut.fi/projects/ica
  • 8Makeig S et al.Independent component analysis in electroencephalographic data[C].In:Advances in Neural Information Processing Systems,Denver,CO:MIT Press, 1996:145~151
  • 9Lee T W et al. Independent component analysis using an extended Infomax algorithm for mixed subgaussian and supergaussian sources[J].Neural Computation, 1999; 11:417~441
  • 10Papadias C B,Paulraj A.A constant modulus algorithm for multi-user signal separation in presence of delay spread using antenna arrays[J].IEEE Signal Processing Lett, 1997; 4 (6): 178~181

共引文献82

同被引文献48

引证文献4

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部