期刊文献+

基于PCA的概率神经网络结构优化 被引量:26

PCA-based probability neural network structure optimization
原文传递
导出
摘要 为了改善概率神经网络(PNN)在训练样本数量较大冗余度较高时存在的结构复杂的问题,提出一种基于主成分分析(PCA)的结构优化方法。以概率乘法公式为理论依据,根据训练样本的PCA结果对PNN进行结构优化,并引入学习算法减小PNN的参数不确定性。实验结果表明:在训练样本数量较大冗余度较高的情况下,优化后的PNN能够使用比传统PNN更简单的网络结构达到相近的结果。 The structures of probability neural networks (PNN) are quite complicated when trained with large, highly redundant training samples. A principal component analysis (PCA)-based structure was developed to optimize the PNN structure. A probability multiplication formula was used as the theoretical foundation. The PNN structure was optimized based on statistical results from the PCA for the training samples. A learning algorithm was introduced into the PNN to reduce uncertainties parameter. Test results show that with large, highly redundant training samples, the optimized PNN has a simpler structure than the traditional PNN to get a similar result.
作者 邢杰 萧德云
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第1期141-144,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家"八六三"高技术项目(2002AA412510 2002AA412420)
关键词 概率神经网络 主成分分析 铝电解槽 阳极效应 probability neural network (PNN) principal component analysis (PCA) aluminium electrolysis cell anode effect
  • 相关文献

参考文献5

  • 1张淳,彭黎辉,姚丹亚,张宝芬.采用改进的PCA算法测量两相流相浓度[J].清华大学学报(自然科学版),2003,43(3):400-401. 被引量:6
  • 2OH Byung-Joo. Face recognition by using neural network classifiers based on PCA and LDA [C]// IEEE International Conference on Systems, Man and Cybernetics. New York: IEEE Press, 2005: 1699- 1703.
  • 3Labonte G. On the efficiency of OLS reduced probabilistic neural networks for aircraft-flare discrimination[C]// Proceedings of the International Joint Conference on Neural Networks. New York: IEEE Press, 2003: 2306-2311.
  • 4Albano M, Caldon R, Tutti R. Voltage sag analysis on three phase system using wavelet transform and probabilistic neural network [C]// Universities Power Engineering Conference. Bristol: UPEC, 2004: 948-952.
  • 5CHEN Chinghan, CHU Chiate. Low complexity iris recognition based on wavelet probabilistic neural networks[C]// Proceedings of IEEE International Joint Conference on Neural Networks. New York: IEEE Press, 2005: 1930 - 1935.

二级参考文献4

  • 1ZHANG Yuchun,PENG Lihui,ZHANG Baofen,et al. Principal component analysis based concentration measuring for two-phase flow [A]. Proceedings of the 3rd International Symposium on Measurement Techniques for Multiphase Flows [C]. Japan: The Japanese Society for Multiphase Flow,2001. 227-230.
  • 2ZOU Lu,ZHANG Yuchun,PENG Lihui,et al. Using principal component analysis to measure two-phase flow concentration [A]. Proceedings of 2nd World Congress on Industrial Process Tomography [C]. Hannover,Germany,2001. 35-40.
  • 3Mohamad-Saleh J,Hoyle B S,Podd F J W,et al. Direct flow process estimations from tomographic data using artificial neural systems [A]. Proceedings of 2nd World Congress on Industrial Process Tomography [C]. Hannover,Germany,2001. 751-758.
  • 4Mohamad-Saleh J,Hoyle B S,Podd F J W,et al. Direct process estimations from tomographic data using artificial neural systems [J]. Journal of Electronic Imaging,2001,10(3): 646-652.

共引文献5

同被引文献240

引证文献26

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部