期刊文献+

含半月板的活体股胫关节接触特性有限元分析 被引量:9

Finite element analysis of in vivo tibio-femoral contact features with menisci
原文传递
导出
摘要 股胫关节接触生物力学研究是人们保护关节减少伤害,理解关节软骨退化造成骨关节病力学成因的关键。该文利用一系列活体膝关节磁共振断层扫描图像(MRI),构建了含半月板、股胫关节软骨和股骨、胫骨三维实体的膝关节有限元模型。探讨了用有限元显式非线性动力学方法求解关节间存在相对滑动和摩擦时股胫关节接触特性,并模拟分析了在步行过程中外载荷变化时股胫关节的接触力学特性。仿真分析表明:在载荷增加时,股胫关节接触面积增加,而股胫关节内外侧接触面积之比几乎不变,内外侧平均接触应力基本相等。 Biomechanics research of the human knee joint is needed to further understand joints behavior, to protect joints against injury, and to know the causes of degenerative arthritis in knee joints. A series of the magnetic resonance images (MRI) of in vivo knee joints was used to construct a 3-D finite element model of the knee including the cortical and trabecular bone of the femur and tibia, the articular cartilage of the femoral condyles and tibial plateau, and both the medial and lateral menisci with their horn attachments. An explicit dynamic nonlinear finite element method was used to simulate the biomechanical features of the tibiofemeral joint contact for various loading conditions with consideration of the relative sliding and friction in the knee. The simulations show that the contact area increases as the load increases. Both the ratio of the contact area between the medial and laterial tibial plateau and the average contact pressure of medial and laterial tibial plateau were almost constant for various loading conditions along the axis of the tibia during the loading phase in a gait.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第2期176-179,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(30370684)
关键词 生物力学 股胫关节 接触 有限元 biomechanics tibiofemoral joint contact finite element
  • 相关文献

参考文献7

  • 1Mow V C, Ateshian G A, Spilker R L. Biomechanics of diarthrodial joints: A review of twenty years of progress[J].ASME J Biomech Engng, 1993, 115: 460-467.
  • 2路奎元,吕厚山.膝关节骨关节病关节变形的原因与治疗方法(综述)[J].伤残医学杂志,2004,12(3):60-62. 被引量:2
  • 3Markolf K L, MeAllister D R, Young C R, et al. Biomechanieal effects of medial-laterial tibial tunnel placement in posterior cruciate ligament reconstruction [J]. J Orthopaedic Research, 2003(21): 177 - 182.
  • 4Thambyah A, Goh J C H, De S D. Contact stresses in the knee joint in deep flexion [J]. Med Eng & Phy, 2005, 27: 329 - 335.
  • 5Warner J J, BOwen M K, Deng Xianghua, et al. Articular contact patterns of the normal glenohumeral joint [J]. J shoulder and elbow surgery, 1998, 7:381 - 388.
  • 6Haut Donahue T L, Hull M L, Rashid M M, et al. A finite element model of the human knee joint for the study of tibio-femoral contact [J]. ASME J Biomech Eng, 2002, 124:273 - 280.
  • 7Meakin J R, Shrive N G, Frank C B, et al. Finite element analysis of the meniscus: the influence of geometry and material properties on its behavior [J]. The Knee, 2003, 10: 33 - 41.

二级参考文献33

  • 1McNicholas MJ, Gibbs S, Linskell JR, et al. The influence of external knee moments on the outcome of total meniscectomy. A comparison of radiological and 3-D analysis measruements[J]. Gait-Posture, 2000 JUN,11 (3): 233~238.
  • 2Hulet C, Sabatier JP, Schiltz D, et al. Dual X-ray absorptionmetty assessment of bone density of the proxima tibia in advanced-stage degenerative disease of the knee[J]. Rev-Chin-Orthop-ReparatriceAppur-Mot, 2001 FEB, 87(1): 50~60.
  • 3chultz W, Gobel D. Articular cartilage regeneration of the knee joint after proximal tibial valgus osteotomy: a prospective study of different intra-and extra-articular operative techniques[J]. Knee Surg. Sport Traumatol Arthrosc, 1999, 7(1): 29~36.
  • 4Sawant MR, Bendall SP, Kavanagh TG, et al. Nonunion of tibial strees fractures in patients with deformed arthritic knees. Treatment using modular total knee orthroplasyt[J]. J. Bone Joint Surg Br. 1999 Jul, 81(4):663~666.
  • 5Schultz W, Gobel D. Articular cartilage regeneration of the knee joint after proximal tibial valgus osteotomy: a prospective study of different intra-and extra-articular operative techniques[J]. Knee. Surg Sport.Traumatol.Arthrosc, 1999, 7(1 ): 29~36.
  • 6Mijiyama M, Oniankitan O, Attoh Mensah K et al. Musculoskeletal condition in children attending two Totolese hospitals[J]. Rheurnatolog,1999, 38(10): 1010-1013.
  • 7Draper ER, Cable JM, Scanchez Ballester J, et al. Improvement in function in after valgus bracing of the knee. An analysis of gait symmetry[J]. J. Bone Joint Surg. Br. 2000 Sep, 82(7): 1001-1005.
  • 8Elahi S, Cahue S, Felson DT The association between varus-valgus alignment and pattellofermoral osteoarthritis[J]. Arthritis. Rheum, 2000,Aug, 43(8): 1874-1880.
  • 9Fukuta Y, Takai S, Yoshino N, et al. Impact load transmission of the knee joint influence of leg alignment and role of meniscus and articular cartilage[J]. Clin. Biomech.(Bristol Avon); 2000 Aug, 15(7): 516-521.
  • 10Sharmar L, Lon C, Cahue S, et al. The mechanism of the effect ofdensiyt in knee osteoarthritis: the mediating role of malalignment[J]. Arthritis Rheum. 2000 Mar, 43(3): 568-575.

共引文献1

同被引文献167

引证文献9

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部