期刊文献+

不同载荷和初始气压下滚动轮胎稳态温度场的测试与有限元分析 被引量:10

EXPERIMENT AND FINITE ELEMENT ANALYSIS OF STEADY-STATE TEMPERATURE DISTRIBUTION IN ROLLING TIRE UNDER DIFFERENT LOADS AND INITIAL INFLATION PRESSURES
下载PDF
导出
摘要 进行了转鼓试验下滚动轮胎稳态温度场的测试;采用试验与计算相结合的方法验证了轮胎在转鼓试验中的实际滚动状态为自由滚动状态;根据解耦的分析思想,进行了转鼓试验下滚动轮胎稳态温度场的有限元分析。用实测的轮胎内部点的稳态温度对有限元的分析结果进行了验证,二者的一致性表明了该分析方法的可靠性。着重讨论了轮胎载荷、初始气压等因素对轮胎稳态温度场的影响。结果表明:随着载荷的增加,整个轮胎的温度场都呈上升的趋势;随着初始气压的增大,轮胎胎侧区域的温度场呈下降的趋势;初始气压对胎冠区域温度场的影响较小。 The steady-state temperature distribution in the rolling tire was measured under different working conditions. In order to determine the real situation of the tire in drum test, which is essential in the following numerical simulation, a method that combines angular velocity measurement and numerical simulation is presented. The steady-state temperature distribution in the rolling tire is predicted with finite element method according to the uncoupling idea. The calculated temperatures at several internal points in the tire are compared with the measured ones. The agreement of them indicates the reliability of the method. The influences of load and initial inflation pressure on steady-state temperature distribution were discussed with this method. Numerical results show that the temperature of the whole tire rises with the load increasing, while the temperature of the tire side decreases with the initial inflation pressure increasing. In addition, the temperature distribution at tire tread is only slightly affected by different initial inflation pressures.
出处 《工程力学》 EI CSCD 北大核心 2008年第1期54-60,70,共8页 Engineering Mechanics
关键词 轮胎 稳态温度场 转鼓试验 有限元 解耦 tire steady-state temperature distribution drum test finite element uncoupling
  • 相关文献

参考文献15

  • 1Conant F S. Tire temperatures [J]. Rubber Chemistry and Technology, 1971, 44(2): 397--439.
  • 2Wilier P R. Heat generation in tires due to the viscoelastic properties of elastomeric components [J]. Rubber Chemistry and Technology, 1974, 47(2): 363-- 375.
  • 3Young D G, Danik J A. Effects of temperature on fatigue and fracture [J]. Rubber Chemistry and Technology, 1994, 67(1): 137--147.
  • 4Indeikin B D, Semark, Nikitina L B. Study of heat and strain in tires using thermal methods [J]. International Polymer Science and Technology, 1977, 4(1): 86--88.
  • 5Yeow S H, El-Sherbiny M, Newcomb T E Thermal analysis of a tire during rolling or sliding [J]. Wear, 1978, 48(1): 157--171.
  • 6Segalman Daniel J. Modeling tire energy dissipation for power loss calculations [J]. Society of Automotive Engineers, 1981, Paper 810162: 673--682.
  • 7Browne Alan L, Arambages Artemis. Modeling the thermal state of tires for powers loss calculations [J]. Society of Automotive Engineers, 1981, Paper 810163: 683 -- 694.
  • 8Whicker Donald, Browne Alan L, Segalman Daniel J. The structure and use of the GMR combined thermomechanical tire power loss model [J]. Society of Automotive Engineers, 1981, Paper 810164: 695-- 704.
  • 9Ebbott T G, Hohman R L, Jeusette J-P, Kerchman V. Tire temperature and rolling resistance prediction with t-mite element analysis [J]. Tire Science and Technology, 1999, 27(1): 2--21.
  • 10Yavari B, Tworzydlo W W, Boss J M. A thermomechanical model to predict the temperature distribution of steady state rolling tires [J]. Tire Science and Technology, 1993, 21(3): 163-- 178.

二级参考文献26

  • 1关锷,何世平,伍小平,王鹏.网格法的自动检测技术研究[J].固体力学学报,1996,17(4):290-295. 被引量:12
  • 2Young D J, Danik J A. Effects of Temperature on Fatigue and Fracture.[J]. Rubber Chemistry and Technology, 1994, 67:397~430.Conant F S. Tire Temperatures[J]. Rubber Chemistry and Technology, 1971, 44:397~430.
  • 3Conant F S. Tire Temperatures[J]. Rubber Chemistry and Technology, 1971, 44:397~430.
  • 4Willett P R. Hysteretic losses in rolling tires[J]. Rubber chemistry and Technology. 1973,46 (2):425.
  • 5Conant F S. Tire Temperatures[J]. Rubber Chemistry and Technology, 1974,44:398~437.
  • 6Claxton W E, Conant F S. Direct Analog Simulation of Hysteretic Heat Buildup in Rubber[J]. Rubber chemistry and Technology, 1974,717~728.
  • 7Cz.O.Poiel, Boguslawski L. Local heat-Transfer Coefficients on the rotating disk in still air[J]. Int. J. Heat Mass Transfer., 1977,18:167~170.
  • 8Schuhing D J. The Rolling Loss of Pneumatic Tires[J]. Rubber Chemistry and Technology, 1980, 53:601~671.
  • 9Danidel J. Segalman, Modeling Tire Energy Dissipation for Power Loss Calculations[J]. GMR1982.
  • 10Alan L.Browne and Artemis Arambages. Modeling the Thermal State of Tires for Powers Loss Calculations[J]. GMR1982.

共引文献31

同被引文献66

引证文献10

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部