期刊文献+

Generation of unconventional geometric phase gates in ion trap-optical cavity system by squeezed operators

Generation of unconventional geometric phase gates in ion trap-optical cavity system by squeezed operators
下载PDF
导出
摘要 Based on squeezed operators this paper has implemented an ideal unconventional geometric quantum gate (GQG) in ion trap-optical cavity system by radiating the trapped ions with the cavity field of frequency ωc and an external laser field of frequency ωL. It can ensure that the gate time is shorter than the coherence time for qubits and the decay time of the optical cavity by appropriately tuning the ionic transition frequency ω0, the frequencies of the cavity mode ωc and the vibrational mode v. It has also realized the unconventional GQG under the influence of the cavity decay based on the squeezed-like operators and found that the present scheme works well for the smaller cavity decay by investigating the corresponding fidelity and success probability. Based on squeezed operators this paper has implemented an ideal unconventional geometric quantum gate (GQG) in ion trap-optical cavity system by radiating the trapped ions with the cavity field of frequency ωc and an external laser field of frequency ωL. It can ensure that the gate time is shorter than the coherence time for qubits and the decay time of the optical cavity by appropriately tuning the ionic transition frequency ω0, the frequencies of the cavity mode ωc and the vibrational mode v. It has also realized the unconventional GQG under the influence of the cavity decay based on the squeezed-like operators and found that the present scheme works well for the smaller cavity decay by investigating the corresponding fidelity and success probability.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第2期424-430,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No 60667001) the Science Foundation of Yanbian University in China (Grant No 2007-31)
关键词 quantum phase gates squeezed operators trapped ions quantum phase gates, squeezed operators, trapped ions
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部