期刊文献+

Entropy of quantum field in toroidal black hole without brick wall 被引量:1

Entropy of quantum field in toroidal black hole without brick wall
下载PDF
导出
摘要 In this paper the entropy of a toroidal black hole due to a scalar field is investigated by using the DLM scheme. The entropy is renormalized to the standard Bekenstein-Hawking formula with a one-loop correction arising from the higher curvature terms of the gravitational action. For the scalar field, the renormalized Newton constant and two renormalized coupling constants in the toroidal black hole are the same as those in the Reissner-Nordstrom black hole except for other one. In this paper the entropy of a toroidal black hole due to a scalar field is investigated by using the DLM scheme. The entropy is renormalized to the standard Bekenstein-Hawking formula with a one-loop correction arising from the higher curvature terms of the gravitational action. For the scalar field, the renormalized Newton constant and two renormalized coupling constants in the toroidal black hole are the same as those in the Reissner-Nordstrom black hole except for other one.
作者 王波波
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第2期467-472,共6页 中国物理B(英文版)
关键词 black hole entropy renormalization brick-wall model scalar field black hole, entropy renormalization, brick-wall model, scalar field
  • 相关文献

参考文献1

二级参考文献19

  • 1[1]R. Foord, E. Jakeman, C.J. Oliver, E. R. Pike, R. J. Blagrove, E. Wood, A.R.Peacock,Nature (London),227(1970), 242.
  • 2[2]B.E. Dahneke, Measurement of Suspended Particales by Quasi-Elastic Light Scattering (Wiley, New York, 1983).
  • 3[3]B.Mcnally. P. Ptain, E.R. Pike, Light Scattering and Photon Correlation Spectrosopy NATO AST Series, High Technology,Vol.40, E.R.Pike and J.B.Abbiss (eds.)(1997), p.117 .
  • 4[4]H. Dhadwal, B. Chu, Rev.Sci. Instrum., 60(1989), 845.
  • 5[5]J. Mcclymer, Rev.Sci. Instrum., 61(1990), 2001.
  • 6[6]H.Wiese, D. Horn, J. Chem. Phys., 94 (1991), 6429.
  • 7[7]O. Glatter, J. Sieberer, H. Schnablegger, Part. Part. Syst. Charact., 8(1991), 274.
  • 8[8]E.R. Pike, J. G. Mcwhirter, C. Demol, Proc.IEE, 131(1984),660.
  • 9[9]C.F. Shannon, W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, Chicago,1949).
  • 10[10]E.R.Pike, B.M Mcnally, Scientific Computing (Springer-Verlag,Berlin,1997), p.101.

共引文献7

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部