期刊文献+

Backstepping synchronization of uncertain chaotic systems by a single driving variable 被引量:1

Backstepping synchronization of uncertain chaotic systems by a single driving variable
下载PDF
导出
摘要 In this paper a parameter observer and a synchronization controller are designed to synchronize unknown chaotic systems with diverse structures. Based on stability theory the structures of the observer and the controller are presented. The unknown Coullet system and Rossler system are taken for examples to demonstrate that the method is effective and feasible. The artificial simulation results show that global synchronization between the unknown Coullet system and the Rossler system can be achieved by a single driving variable with co-operation of the observer and the controller, and all parameters of the Coullet system can be identified at the same time. In this paper a parameter observer and a synchronization controller are designed to synchronize unknown chaotic systems with diverse structures. Based on stability theory the structures of the observer and the controller are presented. The unknown Coullet system and Rossler system are taken for examples to demonstrate that the method is effective and feasible. The artificial simulation results show that global synchronization between the unknown Coullet system and the Rossler system can be achieved by a single driving variable with co-operation of the observer and the controller, and all parameters of the Coullet system can be identified at the same time.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第2期498-502,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No 60574011)
关键词 backstepping synchronization parameter identification uncertain Coullet system Rossler system backstepping synchronization, parameter identification, uncertain Coullet system, Rossler system
  • 相关文献

参考文献2

二级参考文献28

  • 1Pecora L M and Carroll T L 1990 Phys. Roy. Lett. 64 821
  • 2Awad E G 2006 Chaos, Solitons and Fractals 27 345
  • 3Lu J G 2006 Chin. Phys. 15 83
  • 4Park J H 2005 Chaos, Solitons and Fractals 26 959
  • 5Yu H J and Liu Y Z 2005 Acta Phys, Sin. 54 3029 (in Chinese)
  • 6Ma J, Liao G H, Mo X H, Li W X and Zhaag P W 2005 Acta Phys. Sin. 54 5585 (in Chinese)
  • 7Wang Y-W, GuanZ H and Wang H O 2005 Phys. Lett. A 339 325
  • 8Tsimring L S, Rulkov N F, Larsen M L and Gabbay M 2005 Phys, Rev, Lett. 95 14101
  • 9Yan W W,Zhi H G and Hua O W 2005 Phys. Lett. A 339 325
  • 10Yue L J and Shen K 2005 Chin. Phys. 14 1760

共引文献35

同被引文献11

  • 1禹东川,吴爱国,王冬青.A simple asymptotic trajectory control of full states of a unified chaotic system[J].Chinese Physics B,2006,15(2):306-309. 被引量:2
  • 2Yan J J, Lin J S, Liao T L. Synchronization of a modified Chua's circuit system via adaptive sliding mode control[J]. Chaos, Solitons and Fractals, 2008, 36(1): 45-52.
  • 3Peng C C, Chen C L. Robust chaotic control of Lorenz system by backstepping design[J]. Chaos, Solitons and Fractals, 2008, 37(2): 598-608.
  • 4Tommy E. A Numerical Study of the Lorenz and Lorenz-Stenflo Systems[D]. Stockholm, Sweden: KTH, 2005.
  • 5Lu J H, Zhou T S, Chen G R, et al. Generating chaos with a switching piecewise-linear controller[J]. Chaos, 2002, 12(2): 344-349.
  • 6Zheng Z H, Lii J H, Chen G R, et al. Generating two simultaneously chaotic attractors with a switching piecewise-linear controller[J]. Chaos, Solitons and Fractals, 2004, 20(2): 277-288.
  • 7Elabbasy E M, Agiza H N, El-Dessoky M M. Synchronization of modified Chen system[J]. International Journal of Bifurcation and Chaos, 2004, 14(11): 3969-3979.
  • 8Sun H J, Cao H J. Chaos control and synchronization of a modified chaotic system[J]. Chaos, Solitons and Fractals, 2008, 37(5): 1442-1455.
  • 9Li S, Xu W, Li R H. Synchronization of two different chaotic systems with unknown parameters[J]. Physics Letters A, 2007, 361(1/2): 98-102.
  • 10刘福才,宋佳秋.基于主动滑模控制的一类混沌系统异结构反同步[J].物理学报,2008,57(8):4729-4737. 被引量:10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部