摘要
This paper examines the quantization of mesoscopic circuit including Josephson junctions. Following Feynman's assumption, via the Hamilton dynamic approach and by virtue of the entangled state representation, it constructs Hamiltonian operator for the double-Josephson-junction mesoscopic circuit coupled by a capacitor. Then it uses the Heisenberg equation of motion to derive the induction voltage across each Josephson junction. The result manifestly shows how the voltage is affected by the capacitance coupling.
This paper examines the quantization of mesoscopic circuit including Josephson junctions. Following Feynman's assumption, via the Hamilton dynamic approach and by virtue of the entangled state representation, it constructs Hamiltonian operator for the double-Josephson-junction mesoscopic circuit coupled by a capacitor. Then it uses the Heisenberg equation of motion to derive the induction voltage across each Josephson junction. The result manifestly shows how the voltage is affected by the capacitance coupling.
基金
Project supported by the National Natural Science Foundation of China (Grant No 10574060)
the Natural Science Foundation(Grant No Y2004A09) of Shandong Province,China