期刊文献+

粗糙集-遗传算法-神经网络集成分类器及其在转子故障诊断中的应用研究 被引量:9

Rough Set-genetic Algorithm-neural Network Compositive Classifier and Its Application in Rotor Faults Diagnosis
下载PDF
导出
摘要 针对转子故障诊断问题,在综合粗糙集理论、遗传算法及神经网络学习算法各自优点的基础上,提出了一种新的粗糙集-遗传算法-神经网络(RS-GA-NN)集成分类器模型。在该模型中,利用粗糙集理论的离散和约简算法实现对样本数据的特征选取;利用神经网络实现样本特征向量与故障之间的非线性映射;利用遗传算法实现对神经网络的结构优化以使神经网络的泛化能力达到最优。利用转子故障实验台模拟了不平衡、不对中、碰摩及油膜涡动4种故障的127个样本,构建了多故障识别的RS-GA-NN集成分类器,进行了转子故障的智能诊断实验,获得了很好的效果。 The fault diagnosis problem of rotor system was aimed at, on the basis of synthesizing the advantages of Rough Set (RS) theory, Genetic Algorithm (GA) and Neural Network (NN), a new RS--GA-NN compositive classifier was put forward. In the model, the RS was used to carry out selection of sample features; the NN was used to realize the mapping between features and fault type of sample; the GA was used to optimize the structure of NN model in order to make it to reach the best generalization. The rotor fault experimental rig was used to simulate unbalance, misalignment, rubbing and oil whirling faults, and 127 faults samples are obtained. Finally, the RS--GA-NN compositive classifier of multi-faults recognition was established, and the intelligent fault diagnosis experiment was finished, and a very satisfied result is obtained.
作者 陈果
出处 《中国机械工程》 EI CAS CSCD 北大核心 2008年第1期85-90,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50705042) 航空科学基金资助项目(2007ZB52022)
关键词 粗糙集理论 遗传算法 神经网络 转子 故障诊断 rough set(RS) genetic algorithm(GA) neural network(NN) rotor fault diagnosis
  • 相关文献

参考文献8

  • 1陈予恕,田家玉,金宗武,丁千.非线性动力学理论与大型火电机组振动故障综合治理技术[J].中国机械工程,1999,10(9):1063-1068. 被引量:19
  • 2Nalkat M, Yildirim S, Uzmay I. Design of Artificial Neural Networks for Rotor Dynamics Analysis of Rotating Machine Systems[J]. Mechatronies, 2005,15: 573-588.
  • 3Nalinaksh S, Vyas D. Satishkumar. Articial Neural Network Design for Fault Identication in a Rotor-hearing System[J]. Mechanism and Machine Theory, 2001,36: 157-175.
  • 4郝丽娜,王伟,吴光宇,王宛山.粗糙集-神经网络故障诊断方法研究[J].东北大学学报(自然科学版),2003,24(3):252-255. 被引量:23
  • 5Pawlak Z. Rough Set[J]. International Journal of Information and Computer Science, 1982, 11 (5): 341-356.
  • 6Goldberg D. Genetic Algorithms in Search, Optimization and Machine Learning [M]. Reading, MA: Addison- Wesley, 1989.
  • 7Nguyen H S, Skowron A. Quantization of Real Values Attributes,Rough Set and Boolean Reasoning Approaches[C]//Proceeding of the 2nd Joint Annual Conference on Information Science.Wrightsville Beach, NC,USA, 1995 : 34-37.
  • 8Nguyen S H, Nguyen H S. Some Efficient Algorithms for Rough Set Methods[C]//Proc. of the Conference of Information Processing and Management of Uncertanty in Knowledge-Based Systems. Granada, Spain, 1996; 1451-1456.

二级参考文献15

  • 1陈予恕,孟泉.非线性转子-轴承系统的分叉[J].振动工程学报,1996,9(3):266-275. 被引量:66
  • 2丁千,哈尔滨工业大学学报,1998年,30卷,9期,137页
  • 3Forcellese A, Gabriealli F, Ruffini R. Effect of the training set size on springback control by neural network in an air bending process[J]. Journal of Material Processing Technology, 1998,80-81(4):493-500.
  • 4Pawlak Z . Rough sets[J]. Communications of ACM, 1995,38(11):89-95.
  • 5Pawlak Z. Rough sets theory and its application to data analysis[J]. Cybernetics and Systems, 1998,29(9):661-668.
  • 6Chan C C. A rough set approach to attribute generalization in data mining[J]. Journal of Information Science, 1998,107(2):169-176.
  • 7Slowinski R .Rough set reasoning about uncertain data[J]. Fundamenta Informaticae, 1996,27(2,3):229-243.
  • 8Ryszard N. Evaluation of vibroacoustic diagnostic symptoms by means of the rough sets theory[J]. Computers in Industry, 1992,20(2):141-152.
  • 9SAS Institute Inc. SAS system for mixed models[M]. North Carolina: SAS Institute Inc, 1996.
  • 10师汉民,陈吉红,阎兴,王平江.人工神经网络及其在机械工程领域中的应用[J].中国机械工程,1997,8(2):5-10. 被引量:51

共引文献40

同被引文献56

引证文献9

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部