期刊文献+

脉冲放电脱硫反应器中高能电子密度分布的光谱研究

Measurements of Density Distribution of High Energy Electrons by Emission Spectroscopy in Pulsed Discharge Reactor
下载PDF
导出
摘要 脉冲流光放电产生的大于等于11.2eV的高能电子能将处于基态的氮分子激发到N2(C3Πu)态,测试脉冲流光放电时的N2(C3Πu→B3Πg)发射光谱相对强度可以得出脉冲流光放电产生的高能电子的密度。实验在室温常压下研究了空气中线-板式脉冲流光放电脱硫反应器内高能电子密度分布情况,并研究了脉冲电压、反应器的线线间距对反应器内高能电子密度分布的影响。实验结果表明,反应器内的高能电子主要集中在放电线附近高电场区内,随着离放电线的距离增大,高能电子密度减小;脉冲电压对高能电子密度有很大影响,随着电压的升高,高能电子密度基本呈线性增大;线板间距固定,线线间距为线板间距的0.6~1倍时,反应器内高能电子密度分布较为均匀。 Pulsed streamer discharge can generates high energy electrons with energy higher than 11.03 eV and enough to excite N2 to its C3Пu state from the ground state, so the density of the high energy electrons can be obtained by diagnosing the relative emission spectrum intensity of the N2(C^3Пu→B^3Пg) emitted from the pulsed streamer discharge. In the present paper, the density distributions of high energy electrons in the wire-plate DeSO2 reactor with pulsed streamer discharge were studied in air at room temperature and 1 atm, and the influences of pulsed voltage and wire-to-wire spacing on the density distributions of high energy electrons were also studied. The experimental results show that high-energy electrons mainly centralize around the discharge wire of the wire-plate reactor, and the electron density reduces with the increase of the distance from the discharge wire. The pulse voltage has a great influence on the high energy electron density, and the high energy electron density increases linearly with increasing the pulsed voltage. Under a fixed wire-to-plate spacing, when the wire-to-wire spacing is 0.6-1 times the wire-to-plate spacing, the density distributions of the high energy electrons are more uniformity.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2008年第1期14-17,共4页 Spectroscopy and Spectral Analysis
基金 国家高技术研究发展计划“863”项目(2003AA642010)资助
关键词 电子分布 发射光谱 脉冲流光放电 电极配置 Electron distribution Emission spectrum Pulsed streamer discharge Electrode configuration
  • 相关文献

参考文献7

二级参考文献21

  • 1李谦,宁成,周文俊,李劲.用窄脉冲电晕放电方法干脱除烟气中的SO_2[J].环境保护,1994,22(3):17-20. 被引量:4
  • 2Ershov A, Borysow J. J. Phys. D: Appl. Phys., 1995, 28: 68 .
  • 3Hibert C, Gaurand I, Motret O, Pousesle J M. J. Appl. Phys., 1999, 85: 7070.
  • 4Ono R, Oda T. IEEE Trans. Indus. Appl., 2002, 37: 709.
  • 5Van Beek M C, Ter Meulen J J. Chem. Phys. Letters, 2001, 337: 237.
  • 6Ono R, Oda T. Journal of Electrostatics., 2002, 55: 333.
  • 7Falkenstein Z. J. Appl. Phys., 1997, 81: 7158.
  • 8Teich T H. Proc. the NATO Advanced Research Workshop on Non-thermal Plasma Techniques for Pollution Control, 1993, G34 A: 674.
  • 9LIU Zheng-ping, WANG Pei-nan, YANG Wei-dong, ZHENG Jia-biao, LI Fu-ming(刘征平, 王培南, 杨炜东, 郑家骠, 李富铭). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2001, 21(5): 637.
  • 10Chang J S. J. Aerosol Sci., 1989, 20: 1087.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部