期刊文献+

压强对空气/氩气介质阻挡放电中等离子体温度的影响 被引量:3

Influence of Pressure on Plasma Temperature in Air/Argon Dielecteic Barrier Discharge
下载PDF
导出
摘要 使用水电极介质阻挡放电装置,在氩气和空气的混合气体放电中,利用发射光谱法,研究了电子激发温度和分子振动温度随气体压强的变化关系。通过氩原子763.51nm(2P6→1S5)和772.42nm(2P6→1S3)两条谱线强度比法计算电子激发温度;通过氮分子第二正带系(C3Πu→B3Πg)的发射谱线计算氮分子的振动温度;对氮分子离子391.4nm和激发态的氮分子337.1nm两条发射谱线的相对强度进行了测量,以进一步研究电子能量的变化。实验表明,随着压强从20kPa增大到60kPa,电子激发温度减小,分子振动温度减小,氮分子离子谱线与激发态的氮分子谱线强度之比减小。 Electron excitation temperature and molecule vibrational temperature in argon/air dielectric barrier discharge (DBD) at different gas pressure with water electrodes were studied by using optical emission spectra. The spectral lines of Ar Ⅰ 763.51 nm(2P6→1S5) and ArⅠ 772.42 nm(2P2→1S3) were chosen to calculate electron excitation temperature by the relative intensity ratio method. The emission spectra of nitrogen band of second positive system (C^3Πu→B^3Πg) were measured at the same time. The molecule vibration temperature was estimated by the emission intensities of different bands with Δν=-1, Δν=-2, and Δν=-3 in nitrogen band of second positive system, using Boltzmann’s plot method. In addition, the relative line intensities of nitrogen (0-0) band of first negative system at 391.4 nm and (0-0) band of second positive system at 337.1 nm were also measured to study the variation of electron energy. It was found that the electron excitation temperature decreased from 4 700 to 3 300 K and the molecule vibrational temperature decreased from 3 200 to 2 900 K with increasing gas pressure from 20 to 60 kPa. Besides, the ratio of I(N+2)/I(N2) also decreased with pressure increasing from 20 to 60 kPa, indicating that the average electron energy decreases with the gas pressure increasing. These results are of great importance to the study of plasma dynamics of dielectric barrier discharge and also to the underlying industrial applications.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2008年第1期21-23,共3页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(10575027 10375015) 教育部高等学校博士学科点专项科研基金项目(20050075001) 河北省自然科学基金项目(2006000950 A2004000086)资助
关键词 介质阻挡放电 电子激发温度 分子振动温度 Dielectric barrier discharge Electron excitation temperature Molecule vibrational temperature
  • 相关文献

参考文献19

  • 1Kogelschatz U. Plasma Chemistry and Plasma Processing, 2003, 23 (1): 1.
  • 2Kogelschatz U. IEEE Trans. Plasma Sci. , 2002, 30(4): 1400.
  • 3Yan L, Zhu X H, Xu J J, et al. Plasma Chemistry and Plasma Processing, 2005, 25(5): 467.
  • 4Eliasson B, Kogelschatz U. IEEE Trans. Plasma Sci. , 1991, 19(2): 309.
  • 5Liu S H, Neiger M. J. Phys. D: Appl. Phys., 2001, 34(11): 1632.
  • 6Stefanovic I, Bibinov N K, Deryugin A A, et al. Plasma Sources Sci. Technol. , 2001, 10(3):406.
  • 7Park H D, Dhali S K. Appl. Phys. Lett. , 2000, 77(14): 2112.
  • 8Mildren R P, Carman R J. J. Phys. D: Appl. Phys. , 2001, 34(1) : L1.
  • 9Uhm H S, CHoi E H, Lim Y. Appl. Phys. Letts. , 2002, 80(5): 737.
  • 10Shin Y K, Lee J K, Shon C H. IEEE Trans. Plasma Sci. , 1999, 27(1) : 14.

二级参考文献36

  • 1赵文华,沈岩,陈黎明.电弧加热发动机尾流的光谱诊断[J].光谱学与光谱分析,2004,24(8):897-901. 被引量:4
  • 2唐玉国,李福田.壁稳氩弧等离子体光谱诊断[J].光谱学与光谱分析,1996,16(1):11-14. 被引量:6
  • 3Dong Lifang. Plasma Sources Sci. Technol. , 2004, 13: 164.
  • 4Kogelschatz Urich. IEEE Transactions on Plasma, 2002, 30(4):1400.
  • 5Shirafuji Tatsuru, et al. Applied Physics Letters, 2003, 83(12):2309.
  • 6YANGXiao-an LIGuo-zhen(杨孝安 李国珍).锦州师范学院学报:自然科学版,1998,2:26-26.
  • 7DONG Li-fang, LI Xue-chen, YIN Zeng-qian, et al. Chin. Phys. Lett. , 2001, 18; 1380.
  • 8StoffelsE FlikweertAJ StoffelsWW etal.锦州师范学院·自然科学版,2002,11:383-383.
  • 9杨孝安 李国珍.锦州师范学院学报:自然科学版,1998,2:26-26.
  • 10Griem H R. Plasma Spectroscopy. New York: 1964.

共引文献75

同被引文献37

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部