摘要
应用三维荧光光谱对煤矿区水体溶解有机质进行分析测定,探讨特殊环境条件下水体溶解有机质光谱特征。类富里酸荧光峰(峰Ⅰ)和类腐殖酸荧光峰(峰Ⅱ)最为显著,类蛋白荧光峰(峰Ⅳ)强度较弱。地下水体溶解有机质荧光峰强度普遍低于地表水水体同类荧光峰。受人类活动的影响,炼焦区域和采煤区水体荧光峰强于污灌区域和农业区域水体同类荧光峰。矿区人类活动剧烈,煤矿开采加工活动容易把煤中的大量烃类物质分散到周围环境中去,地表水体接受矿井排水、洗煤废水及生活污水等,地下水体则相对不容易受到污染。整个石龙区水体溶解有机质荧光集团来源较多,峰强度受pH影响不大,但在某种程度上受到水体中Ca2+含量的影响。
Three-dimensional excitation emission matrix was applied to characterize the fluorescence properties of dissolved organic matter in various waters of Shilong coal-mining area. Fluorescence peakⅠ (fulvic-like) and peak Ⅱ (humic-like) were strong, while peak Ⅳ and peak Ⅴ (protein-like) were weak or even undetected in some samples. Fluorescence peaks in various waters and different zones showed great difference in intensities and the fluorescence peaks in underground water tended to be much lower than those of surface waters. Furthermore, the fluorescence peaks of rivers and lakes were higher than those of mine drainage, and also the fluorescence peaks in coking zone and coal mining zone were higher than those in sewage-irrigated zone, or even much higher than those in farming zone. The reason may be that coal mining activities and coal industry can bring plenty of organic matter from coal to surroundings. Meanwhile, surface water would accept mine drainage, waste water of coal-washing and sewage from daily life easier than underground water, so surface water can be polluted seriously. Fluorescence peaks in waters from coal mining area are little influenced by pH of the water but can be influenced by the content of Ca^2+ to water in some extent.
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2008年第1期174-177,共4页
Spectroscopy and Spectral Analysis
基金
河南省科技攻关计划项目(0424440045)资助
关键词
三维荧光光谱
地下水
地表水
溶解有机质
煤矿区
3D excitation emission matrix
Underground water
Surface water
Dissolved organic matter
Coal-mining area