期刊文献+

准循环低密度校验码的构造

Construction of Quasi-cyclic Low-density Parity-check Codes
原文传递
导出
摘要 文中提出了一种利用筛选算法寻找指数矩阵的新方法,其构造的准循环低密度校验码有两个主要的优点:一是可用简单线性移位寄存器完成编码;二是只需存储校验矩阵的指数矩阵,可节约很多存储空间。利用计算机能较快的搜索圈长为6,8,10,12的循环置换矩阵阶数的最小值p,搜出的这些p在理论上达到了Fossorier给出的最小下界。仿真结果表明构造的低密度校验码在加性高斯白噪声信道中BPSK调制下用和积迭代译码算法的误比特性能表现良好。 A new method for finding the exponent matrix is proposed, the codes based on it have two main advantages: low complexity shift register encoding and small size of memory. The minimum p with girth 6,8,10,12 can be easily searched, and the searched p theoretically reaches the lower bound given by Fossorier. Simulation results show that the constructed LDPC codes perform well with sum-product decoding algorithm (SPA).
作者 王进利
出处 《通信技术》 2008年第1期49-50,84,共3页 Communications Technology
基金 国家自然科学基金资助项目(60473018) 江苏省自然科学基金资助项目(BK2004051 BK2005207)
关键词 准循环低密度校验码 筛选算法 和积译码 quasi-cyclic low-density parity-check (QC-LDPC) codes griddle algorithm sum-product decoding
  • 相关文献

参考文献5

  • 1Gallager R G. Low-Density Parity-Check Codes[M].Cambridge, MA:MIT. Press, 1963.
  • 2Mackay D J C. Good Error-correcting Codes Based on Very Sparse Matrices[J]. IEEE Trans Inform Theory, 1999, 45(02) :399-431.
  • 3何善宝,赵春明,姜明.LDPC码的一种循环差集构造方法[J].通信学报,2004,25(11):112-118. 被引量:11
  • 4Fossorier M P C. Quasi-Cyclic Low-density Parity-check Codes from Cireulant Permutation Matrices [J]. IEEE Trans. Inform, Theory, 2001,50(08):1788-1793.
  • 5Chen L, Xu J, Djurdjevic I, et al. Near-Shannon-limit Quasicyclic Lowdensity Parity-check codes[J].IEEE Trans. Commun., 2004, 52(07):1038-1042.

二级参考文献9

  • 1GALLAGER R G. Low-density parity-check codes[J]. IRE Transactions On Information Theory, 1962:8(1):21-28.
  • 2GALLAGER R G. Low-Density Parity-Check Codes[D]. Cambridge, MA: MIT Press, 1963.
  • 3MACKAY D J C, NEAL R M. Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1996,32(18): 1645-1646.
  • 4MACKAY D J C. Good error-correcting codes based on very sparse matrices[J]. IEEE Trans Information Theory, 1999, 45(2):399-431.
  • 5WIBERG N. Codes and Decoding on General Graphs[D]. Linkoping Univ, Linkoping,Sweden, 1996.
  • 6KOU Y, LIN S, FOSSORIER M P C. Low-density parity-check codes based on finite geometries: a rediscovery and new results[J].IEEE Trans Inform Theory, 2001, 47(7): 2711-2736.
  • 7靳蕃,陈志.组合编码原理及应用[M]上海:上海科学技术出版社,1994.
  • 8COOLSAET K. Cyclic difference sets[EB/OL]. http://www. inference.phy.cam.ac.uk/cds, 2003.
  • 9MACKAY D J C. Encyclopedia of sparse graph codes[EB/OL]. http://www.inference.phy.cam.ac.uk/mackay/codes/data.html, 2003.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部