期刊文献+

LDPC-SPC乘积码

LDPC-SPC Product Codes
下载PDF
导出
摘要 提出了一种LDPC-SPC乘积码。该乘积码以低密度奇偶校验(lowdensity parity check,LDPC)码为水平码,单奇偶校验(single parity check,SPC)码为垂直码。给出了LDPC-SPC乘积码的硬判决译码算法和软判决译码算法。利用这些译码算法,LDPC-SPC乘积码能够在不同的LDPC码字之间交换比特置信度信息,完成译码。仿真结果表明,以长度8064bit,码率1/2的LDPC码为基础构造的LDPC-SPC乘积码,能够有效地降低该LDPC码的误码平层,并且在误码率为10-7时,乘积码取得了超过LDPC码0.3dB的性能优势。 LDPC-SPC codes is introduced. LDPC-SPC codes choose LDPC codes as horizontal codes and single parity check (SPC) codes as vertical codes. Some decoding algorithms are also given, including algorithms based on hard decision and soft decision. By these algorithms, each bit of every LDPC code can get extrinsic messages from other LDPC code words to help LDPC decoder decode successfully. Based on the LDPC code which is half rate and 8064 bits long, a LDPC-SPC code is constructed. Simulation results show that the LDPC-SPC codes can lower the error floor of the LDPC codes and have better BER (Bit Error Ratio) performance. When BER is 10^-7 , the performance of the LDPC-SPC codes is 0.3 dB better than the LDPC codes.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第1期93-97,共5页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国防预先研究基金(9140A22030106JW02)资助项目
关键词 低密度奇偶校验码 单奇偶校验码 乘积码 误码平层 low density parity check codes single parity check codes product codes error floor
  • 相关文献

参考文献6

  • 1Gallager R G, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963
  • 2MacKay D J C, Neal R M, Near Shannon limit performance of low-density parity-check codes. Electron Lett, 1996, 32 (18) : 1645-1646
  • 3ETSI EN 302 307. Second Generation Framing Structure, Channel Coding and Modulation System for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications. Jan. 2004
  • 4IEEE Std. 802 16e. IEEE standard for local and metropolitan area networks Part 16: Air interface for fixed and mobile broadband wireless access systems, amendment 2: physical and medium access control layer for combined fixed and mobile operation in licensed bands. Feb. 2006
  • 5MacKay D J C, Postol M. Weaknesses of margulis and ramanujan-margulis low density parity-check codes. Electronic Notes in Theoretical Computer Science, 2003, 74(10) : 1-8
  • 6Chen Jinghu, Tanner R M, Jones C, et al. Improved minsum decoding algorithms for irregular LDPC codes // Proc ISIT'05. Massachusetts: MIT Press, 2005:449-453

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部