摘要
基于Shamir的门限方案、椭圆曲线密码体制以及hash函数,提出了一个基于一般访问结构上的多重秘密共享方案。该方案具有以下特点:参与者的秘密份额由自己选定;每个参与者只需维护一个秘密份额就可以实现对任意多个秘密的共享;任何参与者都可以是秘密分发者,分发者和各参与者之间可以明文形式传输;在秘密恢复过程中,秘密恢复者能够验证其他参与者是否进行了欺骗。方案的安全性是基于Shamir的门限方案、椭圆曲线密码体制的安全性以及hash函数的安全性。
Based on Shamir's threshold scheme, the elliptic curve (the security of ECDLP) and hash function, a secret sharing scheme for the general access structure is proposed. The scheme has the following characteristics: Each participant's secret shadow is selected by the participant himself. The shadows don't need to change when the shared secret is renewed. The participant can be work as dealer. Scheme is security without conflict parameters. In the recovery phase, each participant can check whether shadow is true or not. The security of the scheme is the same as that of Shamir's threshold scheme, the elliptic curve cryptosystem and hash function.
出处
《计算机工程与设计》
CSCD
北大核心
2008年第1期16-17,75,共3页
Computer Engineering and Design
基金
国家自然科学基金项目(60503012)
关键词
椭圆曲线密码体制
秘密共享
访问结构
门限方案
安全性
elliptic curve cryptography
secret sharing
access structure
threshold scheme
security